已知sinα和cosα是方程8x2+6mx+2m+1=0的兩個(gè)實(shí)根,則m的值等于   
【答案】分析:因?yàn)閟inα和cosα是方程8x2+6mx+2m+1=0的兩個(gè)實(shí)根,所以根據(jù)韋達(dá)定理用m表示出sinα+cosα及sinαcosα,利用同角三角函數(shù)間的基本關(guān)系得出關(guān)系式,把表示出的sinα+cosα及sinαcosα代入得到關(guān)于m的方程,求出方程的解可得m的值.
解答:解:由題意,根據(jù)韋達(dá)定理得:sinα+cosα=-,sinαcosα=,
∵sin2α+cos2α=1,
∴sin2α+cos2α=(sinα+cosα)2-2sinαcosα=-=1,
即9m2-8m-20=0,
因式分解得:(9m+10)(m-2)=0,
解得:m1=-,m2=2,
把m=2代入原方程得:8x2+12x+5=0,∵△=144-160=-16<0,方程無(wú)解,故舍去,
則m的值為-
故答案為:-
點(diǎn)評(píng):此題考查了同角三角函數(shù)間的基本關(guān)系的運(yùn)用,韋達(dá)定理及根的判別式的應(yīng)用,靈活運(yùn)用韋達(dá)定理及同角三角函數(shù)間的基本關(guān)系得出關(guān)于m的方程是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα和cosα是方程8x2+6mx+2m+1=0的兩個(gè)實(shí)根,則m的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα和cosα是方程4x2+2
6
x+m=0
的兩實(shí)根
(1)求m的值;
(2)求
sinα
1-cotα
+
cosα
1-tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知sinα和cosα是方程數(shù)學(xué)公式的兩實(shí)根
(1)求m的值;
(2)求數(shù)學(xué)公式的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知sinα和cosα是方程4x2+2
6
x+m=0
的兩實(shí)根
(1)求m的值;
(2)求
sinα
1-cotα
+
cosα
1-tanα
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案