【題目】已知函數(shù)f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在實(shí)數(shù)a,使得不等式f(x)≥1﹣a+2|2+x|成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:a=2時:f(x)=|3x﹣2|﹣|x+2|≤3,
或 或 ,
解得:﹣ ≤x≤
(2)解:不等式f(x)≥1﹣a+2|2+x|成立,
即|3x﹣a|﹣|3x+6|≥1﹣a,
由絕對值不等式的性質(zhì)可得||3x﹣a|﹣|3x+6||≤|(3x﹣a)﹣(3x+6)|=|a+6|,
即有f(x)的最大值為|a+6|,
∴ 或 ,
解得:a≥﹣
【解析】(1)通過討論x的范圍,得到關(guān)于x的不等式組,解出取并集即可;(2)由題意知這是一個存在性的問題,須求出不等式左邊的最大值,可運(yùn)用絕對值不等式的性質(zhì)可得最大值,再令其大于等于a,即可解出實(shí)數(shù)a的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1(側(cè)棱垂直于底面的棱柱為直棱柱)中,BC=CC1=1,AC=2,∠ABC=90°.
(1)求證:平面ABC1⊥平面A1B1C;
(2)設(shè)D為AC的中點(diǎn),求平面ABC1與平面C1BD所成銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查某校 100 名學(xué)生的數(shù)學(xué)成績情況,得下表:
一般 | 良好 | 優(yōu)秀 | |
男生(人) | 18 | ||
女生(人) | 10 | 17 |
已知從這批學(xué)生中隨機(jī)抽取1名學(xué)生,抽到成績一般的男生的概率為0.15.
(1)求的值;
(2)若用分層抽樣的方法,從這批學(xué)生中隨機(jī)抽取20名,問應(yīng)在優(yōu)秀學(xué)生中抽多少名?
(3)已知,優(yōu)秀學(xué)生中男生不少于女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓中心為坐標(biāo)原點(diǎn)O,對稱軸為坐標(biāo)軸,且過M(2, ) ,N(,1)兩點(diǎn),
(I)求橢圓的方程;
(II)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點(diǎn)A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),且f′(x)=sin2x﹣ cos2x,則下列說法正確的是( )
A.y=f(x)的周期為
B.y=f(x)在[0, ]上是減函數(shù)
C.y=f(x)的圖象關(guān)于直線x= 對稱
D.y=f(x)是偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費(fèi)用是每日92元,根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結(jié)算,每輛自行車的日租金x元只取整數(shù),用元表示出租自行車的日純收入日純收入一日出租自行車的總收入管理費(fèi)用
求函數(shù)的解析式及其定義域;
當(dāng)租金定為多少時,才能使一天的純收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求∠AOB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】a、b、c為三條不重合的直線,α、β、γ為三個不重合的平面,現(xiàn)給出六個命題.
①a∥b; ②a∥b; ③α∥β;
④α∥β; ⑤a∥α; ⑥a∥α,
其中正確的命題是________.(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com