(2012•揚(yáng)州模擬)若x≥0,y≥0,且x+2y=1,則x2+y2的取值范圍是
[
1
5
,1]
[
1
5
,1]
分析:由x+2y=1得x=1-2y,代入x2+y2得關(guān)于y的二次函數(shù),因此可在閉區(qū)間[0,
1
2
]上求出函數(shù)的最大、最小值,從而得出x2+y2的取值范圍.
解答:解:∵x、y滿足x+2y=1,
∴x=1-2y,可得x2+y2=(1-2y)2+y2=5y2-4y+1
∵y≥0,x=1-2y≥0,∴0≤y≤
1
2

而5y2-4y+1=5(y-
2
5
2+
1
5

由此可得,當(dāng)y=
2
5
時,x2+y2取最小值
1
5
;當(dāng)y=0時,x2+y2取最大值1
∴x2+y2的取值范圍是[
1
5
,1]

故答案為:[
1
5
,1]
點評:本題給出已知等式x+2y=1,求x2+y2的最大最小值,著重考查了二次函數(shù)求閉區(qū)間上的最值的知識點,考查了消元的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•揚(yáng)州模擬)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左頂點為A,左、右焦點為F1,F(xiàn)2,點P是橢圓上一點,
PA
=
3
2
PF1
-
1
2
PF2
,且△PF1F2的三邊構(gòu)成公差為1的等差數(shù)列.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若OP=2
7
,求橢圓方程;
(Ⅲ) 若c=1,點P在第一象限,且△PF1F2的外接圓與以橢圓長軸為直徑的圓只有一個公共點,求點P的坐標(biāo)﹒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•揚(yáng)州模擬)已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的一條漸近線與曲線y=x3+2相切,則該雙曲線的離心率等于
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•揚(yáng)州模擬)如圖:在正方體ABCD-A1B1C1D1中,O是AC的中點,E是線段D1O上一點,且
D1E
=λ•
EO

(Ⅰ)求證:DB1⊥平面CD1O;
(Ⅱ)若平面CDE⊥平面CD1O,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•揚(yáng)州模擬)已知集合A={x|-1<x<2},B={x|-3<x≤1},則A∪B=
{x|-3<x<2}
{x|-3<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•揚(yáng)州模擬)復(fù)數(shù)
1-
2
i
i
的實部與虛部的和是
-1-
2
-1-
2

查看答案和解析>>

同步練習(xí)冊答案