已知兩條不同直線、,兩個不同平面,給出下列命題:

①若垂直于內(nèi)的兩條相交直線,則;

②若,則平行于內(nèi)的所有直線;

③若,,則

④若,,則;

⑤若,則;

其中正確命題的序號是                  .(把你認(rèn)為正確命題的序號都填上)

 

【答案】

①④.

【解析】

試題分析:①由直線與平面垂直的判定定理可知此命題正確;

②錯,直線l與平面內(nèi)的直線也可能異面.

③一個平面內(nèi)的一條直線垂直另一個平面的一條直線,兩個平面不一定垂直,故錯.

④若,,則,符合面面垂直的判定定理,故正確;

⑤m與l也可能異面,故錯.

所以正確命題的序號為①④.

考點(diǎn):線面垂直,面面垂直的判定與性質(zhì),兩條直線的位置關(guān)系.

點(diǎn)評:掌握線面垂直,面面垂直的判定與性質(zhì)是判定線面,面面垂直關(guān)系的前提,在研究空間兩條直線的位置關(guān)系時,要從相交,平行,異面三種情況來考慮.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、已知兩條不同直線l1和l2及平面α,則直線l1∥l2的一個充分條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中:①已知兩條不同直線m、n兩上不同平面α,β,m⊥α,n⊥β,m⊥n,則α⊥β;②函數(shù)y=sin(2x-
π
6
)圖象的一個對稱中心為點(diǎn)(
π
3
,0);③若函數(shù)f(x)在R上滿足f(x+1)=
1
f(x)
,則f(x)是周期為2的函數(shù);④在△ABC中,若
OA
+
OB
=2
CO
,則S△ABC=S△BOC其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條不同直線m、l,兩個不同平面α、β,給出下列命題:
①若l垂直于α內(nèi)的兩條相交直線,則l⊥α;
②若l∥α,則l平行于α內(nèi)的所有直線;
③若m?α,l?β且l⊥m,則α⊥β;
④若l?β,l⊥α,則α⊥β;
⑤若m?α,l?β且α∥β,則m∥l.
其中正確命題的序號是
①④
①④
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①已知兩條不同直線l1和l2及平面a,則直線l1∥l2的一個充分條件是l1⊥a且l2⊥a;
②函數(shù)y=sin(2x+
π
3
)的最小正周期是π;
③“在△ABC中,若sinA>sinB,則A>B”的逆命題是真命題;
④“m=-1”是“直線mx+(2m-1)y+1=0和直線3x+my+2=0垂直”的充要條件;
正確的說法有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條不同直線l1:(m+3)x+4y=5-3m,l2:2x+(5+m)y=8相交,則m的取值是( 。

查看答案和解析>>

同步練習(xí)冊答案