1.已知函數(shù)f(x)=tan(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求出函數(shù)y=f(x)的表達(dá)式;
(2)對(duì)任意的a∈R,求y=f(x)在區(qū)間[a,a+10π]上零點(diǎn)個(gè)數(shù)的所有可能值.

分析 (1)由圖象,知f(0)=tanφ=0,且|φ|<$\frac{π}{2}$,再由T=$\frac{π}{ω}$,能求出函數(shù)y=f(x)的表達(dá)式.
(2)函數(shù)f(x)=tan2x的最小正周期為$\frac{π}{2}$,則長(zhǎng)度為10π的區(qū)間包含了20個(gè)周期,由此能求出y=f(x)在區(qū)間[a,a+10π]上零點(diǎn)個(gè)數(shù)的所有可能值.

解答 解:(1)由函數(shù)f(x)=tan(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象,知:
f(0)=tanφ=0,且|φ|<$\frac{π}{2}$,
∴φ=0,∴f(x)=tanωx,
∵$\frac{T}{2}=\frac{π}{4}$,∴T=$\frac{π}{2}$,
∴T=$\frac{π}{ω}$,∴ω=$\frac{π}{T}=2$,
∴函數(shù)y=f(x)的表達(dá)式為f(x)=tan2x.
(2)由(1)知函數(shù)f(x)=tan2x的最小正周期為$\frac{π}{2}$,
則長(zhǎng)度為10π的區(qū)間包含了20個(gè)周期,
若區(qū)間的端點(diǎn)恰好是零點(diǎn),則20個(gè)周期有21個(gè)零點(diǎn),
若區(qū)間的端點(diǎn)不是零點(diǎn),則20個(gè)周期有20個(gè)零點(diǎn),
∴y=f(x)在區(qū)間[a,a+10π]上零點(diǎn)個(gè)數(shù)的所有可能值是20或21.

點(diǎn)評(píng) 本題考查函數(shù)的表達(dá)式的求法,考查函數(shù)在閉區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意三角函數(shù)的圖象及性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖所示的程序框圖運(yùn)行的結(jié)果是( 。
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2014}{2013}$D.$\frac{2015}{2014}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.直線2x-3y=6在x軸上的截距為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)y=a+bsin x的最大值是$\frac{3}{2}$,最小值是$-\frac{1}{2}$,求函數(shù)y=asinbx的最值與周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.對(duì)于回歸方程$\widehat{y}$=4.75x+257,當(dāng)x=28時(shí),y的估計(jì)值為( 。
A.390B.400C.420D.440

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知在海島A上有一座海拔1千米的山,山頂設(shè)有一個(gè)觀察站P,上午11時(shí),測(cè)得一輪船在島北偏東30°,俯角為30°的B處,到11時(shí)10分又測(cè)得該船在島北偏西60°,俯角為60°的C處.小船沿BC行駛一段時(shí)間后,船到達(dá)海島的正西方向的D處,此時(shí)船距島A有$\frac{{9+\sqrt{3}}}{13}$千米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某市甲、乙兩校高二級(jí)學(xué)生分別有1100人和1000人,為了解兩校全體高二級(jí)學(xué)生期 末統(tǒng)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從這兩所學(xué)校共抽取105名高二學(xué)生的數(shù)學(xué) 成績(jī),并得到成績(jī)頻數(shù)分布表如下,規(guī)定考試成績(jī)?cè)赱120,150]為優(yōu)秀.
甲校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)
頻數(shù)23101515x31
乙校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)
頻數(shù)12981010y3
(1)求表中x與y的值;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,問(wèn)是否有99%的把握認(rèn)為學(xué)生數(shù)學(xué)成績(jī)優(yōu)秀與所在學(xué)校有關(guān)?
(3)若以樣本的頻率作為概率,現(xiàn)從乙?傮w中任取3人(每次抽取看作是獨(dú)立重復(fù)的),求優(yōu)秀學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.
 P(K2≥k) 0.150.10 0.05 0.025 0.010 0.005 0.001 
 k2.072 2.706 3.841 5.024 6.635 7.879 10.828 
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
  甲校 乙校 總計(jì)
 優(yōu)秀   
 非優(yōu)秀   
 總計(jì)   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.?dāng)?shù)列{an}中,a1=5,an+1=an+$\frac{1}{n(n+1)}$,那么這個(gè)數(shù)列的通項(xiàng)公式是$\frac{6n-1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.用列舉法表示集合{(x,y)|x+y=3,x∈N,y∈N}:{(0,3),(1,2),(2,1),(3,0)}.

查看答案和解析>>

同步練習(xí)冊(cè)答案