已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),經(jīng)過(guò)點(diǎn)(3,-2)與向量(-1,1)平行的直線l交橢圓C于A,B兩點(diǎn),交x軸于M點(diǎn),又
AM
=2
MB

(Ⅰ)求橢圓C長(zhǎng)軸長(zhǎng)的取值范圍;
(Ⅱ)若|
AB
|=
3
2
2
,求橢圓C的方程.
(I)設(shè)直線l與橢圓C交于A(x1,y1),B(x2,y2)兩點(diǎn),和x軸交于M(1,0)點(diǎn).
AM
=2
MB
,知y1=-2y2,
將x=1-y代入
x2
a2
+
y2
b2
=1
,得(a2+b2)y2-2b2y+b2(1-a2)=0,①
由韋達(dá)定理,知
y1+y2=
2b2
a2+b2
=-y2,②
y1y2=
b2(1-a2)
a2+b2
=-2y22,③

2
得b2=
a2(1-a2)
a2-9
,④
對(duì)方程①由△=4b4-4b2(a2+b2)(1-a2)>0,得a2+b2>1.⑤
將④代入⑤,得a2+
a2(1-a2)
a2-9
>1
,解得1<a2<9,
又由a>b及④,得a2<5,∴1<a2<5,∴1<a<
5

∴所求橢圓長(zhǎng)軸長(zhǎng)的取值范圍是(2,2
5
).
(II)由(I)中②③得,
|AB|=
2
|y1-y2|=
2
(y1+y2)2-4y1y2

=
2
2
ab
a2+b2-1
a2+b2
,
∵|
AB
|=
3
2
2
,∴
2
2
ab
a2+b2-1
a2+b2
=
3
2
2
,⑥
聯(lián)立④⑥,解得a2=3,b2=1,
∴橢圓C的方程為
x2
3
+y2=1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)等于12,離心率為
1
3

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在橢圓上任取一點(diǎn)P,過(guò)P點(diǎn)做y軸垂線段PQ,Q為垂足,當(dāng)P在橢圓上運(yùn)動(dòng)時(shí),求線段PQ的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C:x2=2py過(guò)點(diǎn)P(1,
1
2
)
,直線l交C于A,B兩點(diǎn),過(guò)點(diǎn)P且平行于y軸的直線分別與直線l和x軸相交于點(diǎn)M,N.
(1)求p的值;
(2)是否存在定點(diǎn)Q,當(dāng)直線l過(guò)點(diǎn)Q時(shí),△PAM與△PBN的面積相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)有兩個(gè)頂點(diǎn)在直線x+2y-2=0上
(1)求橢圓C的方程;
(2)當(dāng)直線l:y=x+m與橢圓C相交時(shí),求m的取值范圍;
(3)設(shè)直線l:y=x+m與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若以為AB直徑的圓過(guò)原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C:x2=2py(p>0)上一點(diǎn)A(m,4)到其焦點(diǎn)F的距離為
17
4

(1)求P與m的值;
(2)若直線l過(guò)焦點(diǎn)F交拋物線于P,Q兩點(diǎn),且|PQ|=5,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xoy中,如圖,已知橢圓
x2
9
+
y2
5
=1
的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F,設(shè)過(guò)點(diǎn)T(t,m)的直線TA、TB與此橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0
(1)設(shè)動(dòng)點(diǎn)P滿足(
PF
+
PB
)(
PF
-
PB
)=13
,求點(diǎn)P的軌跡方程;
(2)設(shè)x1=2,x2=
1
3
,求點(diǎn)T的坐標(biāo);
(3)若點(diǎn)T在點(diǎn)P的軌跡上運(yùn)動(dòng),問(wèn)直線MN是否經(jīng)過(guò)x軸上的一定點(diǎn),若是,求出定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C:y2=4x的準(zhǔn)線與x軸交于M點(diǎn),過(guò)M點(diǎn)斜率為k的直線l與拋物線C交于A、B兩點(diǎn)(A在M、B之間).
(1)F為拋物線C的焦點(diǎn),若|AM|=
5
4
|AF|,求k的值;
(2)如果拋物線C上總存在點(diǎn)Q,使得QA⊥QB,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)M(-1,0),N(1,0),動(dòng)點(diǎn)P(x,y)滿足:|PM|•|PN|=
4
1+cos∠MPN
,
(1)求P的軌跡C的方程;
(2)是否存在過(guò)點(diǎn)N(1,0)的直線l與曲線C相交于A、B兩點(diǎn),并且曲線C存在點(diǎn)Q,使四邊形OAQB為平行四邊形?若存在,求出平行四邊形OAQB的面積;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
過(guò)點(diǎn)(
3
2
2
)
,它的離心率為
6
2
,P、Q分別在雙曲線的兩條漸近線上,M是線段PQ中點(diǎn),|PQ|=2
2

(Ⅰ)求雙曲線及其漸近線方程;
(Ⅱ)求點(diǎn)M的軌跡C的方程;
(Ⅲ)過(guò)C左焦點(diǎn)F1的直線l與C相交于點(diǎn)A、B,F(xiàn)2為C的右焦點(diǎn),求△ABF2面積最大時(shí)
F2A
F2B
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案