【題目】已知函數(shù)f(x)=|log3x|,實數(shù)m,n滿足0<m<n,且f(m)=f(n),若f(x)在[m2 , n]上的最大值為2,則 .
【答案】9
【解析】∵f(x)=|log3x|,正實數(shù)m,n滿足m<n,且f(m)=f(n),∴-log3m=log3n,∴mn=1.∵f(x)在區(qū)間[m2 , n]上的最大值為2,函數(shù)f(x)在[m2,1)上是減函數(shù),在(1,n]上是增函數(shù),∴-log3m2=2或log3n=2.若-log3m2=2,得m= ,則n=3,此時log3n=1,滿足題意.那么 =3÷ =9.同理:若log3n=2,得n=9,則m= ,此時-log3m2=4,不滿足題意.綜上,可得 =9.
【考點精析】根據(jù)題目的已知條件,利用對數(shù)的運算性質(zhì)和對數(shù)函數(shù)的單調(diào)性與特殊點的相關(guān)知識可以得到問題的答案,需要掌握①加法:②減法:③數(shù)乘:④⑤;過定點(1,0),即x=1時,y=0;a>1時在(0,+∞)上是增函數(shù);0>a>1時在(0,+∞)上是減函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】直線y=x+a與拋物線y2=5ax(a>0)相交于A,B兩點,C(0,2a),給出下列4個命題:
p1:△ABC的重心在定直線7x﹣3y=0上,p2:|AB| 的最大值為2 ;
p3:△ABC的重心在定直線 3x﹣7y=0上;p4:|AB| 的最大值為2 .
其中的真命題為( 。
A.p1 , p2
B.p1 , p4
C.p2 , p3
D.p3 , p4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直角坐標平面內(nèi)的兩個不同點 、 滿足條件:① 、 都在函數(shù) 的圖像上;② 、 關(guān)于原點對稱,則稱點對 是函數(shù) 的一對“友好點對”(注:點對 與 看作同一對“友好點對”).已知函數(shù) ,則此函數(shù)的“友好點對”有( )對.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時間僅能持續(xù)5個月,預測上市初期和后期會因供不應不足使價格呈持續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求使價格連續(xù)下跌.現(xiàn)有三種價格模擬函數(shù):
① ;② ;③ .(以上三式中、 均為常數(shù),且 )
(1)為準確研究其價格走勢,應選哪種價格模擬函數(shù)(不必說明理由)
(2)若 , ,求出所選函數(shù) 的解析式(注:函數(shù)定義域是 .其中 表示8月1日, 表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養(yǎng)殖戶的經(jīng)濟效益,當?shù)卣媱澰趦r格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內(nèi)價格下跌.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“拋物線 的準線方程為 ”是“拋物線 的焦點與雙曲線 的焦點重合”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實,黃實,利用2×勾×股+(股﹣勾)2=4×朱實+黃實=弦實,化簡,得勾2+股2=弦2 , 設勾股中勾股比為1: ,若向弦圖內(nèi)隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A.866
B.500
C.300
D.134
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐曲線 ( 是參數(shù))和定點 , 、 是圓錐曲線的左、右焦點.
(1)求經(jīng)過點 且垂直于直線 的直線 的參數(shù)方程;
(2)以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,求直線 的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 : 的離心率為 ,且以兩焦點為直徑的圓的內(nèi)接正方形面積為2.
(1)求橢圓 的標準方程;
(2)若直線 : 與橢圓 相交于 , 兩點,在 軸上是否存在點 ,使直線 與 的斜率之和 為定值?若存在,求出點 坐標及該定值,若不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com