【題目】橢圓的離心率.

(1)求橢圓的方程;

(2)如圖所示,A、B、D是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),直線DPx軸于點(diǎn)N,直線ADBP于點(diǎn)M,設(shè)BP的斜率為k,MN的斜率為m.證明:2m-k為定值.

【答案】(1);(2)

【解析】

(1)由橢圓的離心率結(jié)合性質(zhì) , ,列出關(guān)于 、 、的方程組,求出 、 即可得結(jié)果;(2)設(shè)直線的方程為,與橢圓方程聯(lián)立可得點(diǎn)坐標(biāo),直線的方程聯(lián)立,可得點(diǎn)坐標(biāo),由三點(diǎn)共線可得點(diǎn)坐標(biāo),利用斜率公式變形后即可得結(jié)果.

(1)解 因?yàn)?/span>e=,

所以a=c,b=c.

代入a+b=3得,c=,a=2,b=1.

故橢圓C的方程為+y2=1.

(2)證明 因?yàn)?/span>B(2,0),點(diǎn)P不為橢圓頂點(diǎn),

則可設(shè)直線BP的方程為y=k(x-2)(k≠0,k≠±),①

代入+y2=1,解得P.

直線AD的方程為y=x+1.②

聯(lián)立解得M.

D(0,1),P,N(x,0)三點(diǎn)共線知

,解得N.

所以MN的斜率為m=

.

2m-k=-k= (定值).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量(單位:克)分別在,,,,中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.

(1)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率;

(2)某經(jīng)銷商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:

方案:所有芒果以10元/千克收購(gòu);

方案:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),高于或等于250克的以3元/個(gè)收購(gòu).

通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計(jì)劃在市的區(qū)開(kāi)設(shè)分店,為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店聽(tīng)其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù), 表示這個(gè)個(gè)分店的年收入之和.

(個(gè))

2

3

4

5

6

(百萬(wàn)元)

2.5

3

4

4.5

6

(1)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

(2)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開(kāi)設(shè)多少個(gè)分時(shí),才能使區(qū)平均每個(gè)分店的年利潤(rùn)最大?

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

平面直角坐標(biāo)系xOy中,曲線C.直線l經(jīng)過(guò)點(diǎn)Pm0),且傾斜角為O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.

)寫(xiě)出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;

)若直線l與曲線C相交于AB兩點(diǎn),且|PA·PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的奇函數(shù),且.若對(duì)任意的,,都有.

1)判斷函數(shù)的單調(diào)性,并說(shuō)明理由;

2)若,求實(shí)數(shù)的取值范圍;.

3)若不等式對(duì)任意都恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△中,,,點(diǎn)邊上,且.

(1)若,求;

(2)若,求△的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

男性市民

女性市民

合計(jì)

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問(wèn)題:

(i)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的奇函數(shù)y=f(x)滿足f(3)=0,且當(dāng)x>0時(shí),不等式f(x)>﹣xf′(x)恒成立,則函數(shù)g(x)=xf(x)+lg|x+1|的零點(diǎn)的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案