在某校教師趣味投籃比賽中,比賽規(guī)則是: 每場(chǎng)投6個(gè)球,至少投進(jìn)4個(gè)球且最后2個(gè)球都投進(jìn)者獲獎(jiǎng);否則不獲獎(jiǎng). 已知教師甲投進(jìn)每個(gè)球的概率都是
(1)記教師甲在每場(chǎng)的6次投球中投進(jìn)球的個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(2)求教師甲在一場(chǎng)比賽中獲獎(jiǎng)的概率;
(3)已知教師乙在某場(chǎng)比賽中,6個(gè)球中恰好投進(jìn)了4個(gè)球,求教師乙在這場(chǎng)比賽中獲獎(jiǎng)的概率;教師乙在這場(chǎng)比賽中獲獎(jiǎng)的概率與教師甲在一場(chǎng)比賽中獲獎(jiǎng)的概率相等嗎?

(1)數(shù)學(xué)期望為4
(2)
(3)不相等

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩人參加某電視臺(tái)舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨(dú)立作答,然后由乙回答剩余3題,每人答對(duì)其中2題就停止答題,即闖關(guān)成功.已知在6道被選題中,甲能答對(duì)其中的4道題,乙答對(duì)每道題的概率都是.
(1)求甲、乙至少有一人闖關(guān)成功的概率;
(2)設(shè)甲答對(duì)題目的個(gè)數(shù)為ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某企業(yè)甲,乙兩個(gè)研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨(dú)立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預(yù)計(jì)企業(yè)可獲得萬(wàn)元,若新產(chǎn)品研發(fā)成功,預(yù)計(jì)企業(yè)可獲得利潤(rùn)萬(wàn)元,求該企業(yè)可獲得利潤(rùn)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

下表是某市從3月份中隨機(jī)抽取的天空氣質(zhì)量指數(shù)()和“”(直徑小于等于微米的顆粒物)小時(shí)平均濃度的數(shù)據(jù),空氣質(zhì)量指數(shù)()小于表示空氣質(zhì)量?jī)?yōu)良.

日期編號(hào)










空氣質(zhì)量指數(shù)(










小時(shí)平均濃度(










 
(1)根據(jù)上表數(shù)據(jù),估計(jì)該市當(dāng)月某日空氣質(zhì)量?jī)?yōu)良的概率;
(2)在上表數(shù)據(jù)中,在表示空氣質(zhì)量?jī)?yōu)良的日期中,隨機(jī)抽取兩個(gè)對(duì)其當(dāng)天的數(shù)據(jù)作進(jìn)一步的分析,設(shè)事件為“抽取的兩個(gè)日期中,當(dāng)天‘’的小時(shí)平均濃度不超過(guò)”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

做拋擲兩顆骰子的試驗(yàn):用(x,y)表示結(jié)果,其中x表示第一顆骰子出現(xiàn)的點(diǎn)數(shù),y表示第二顆骰子出現(xiàn)的點(diǎn)數(shù),(1)寫(xiě)出試驗(yàn)的基本事件;(2)求事件“出現(xiàn)點(diǎn)數(shù)之和大于8”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013•天津)一個(gè)盒子里裝有7張卡片,其中有紅色卡片4張,編號(hào)分別為1,2,3,4; 白色卡片3張,編號(hào)分別為2,3,4.從盒子中任取4張卡片 (假設(shè)取到任何一張卡片的可能性相同).
(1)求取出的4張卡片中,含有編號(hào)為3的卡片的概率.
(2)再取出的4張卡片中,紅色卡片編號(hào)的最大值設(shè)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商店試銷(xiāo)某種商品20天,獲得如下數(shù)據(jù):

日銷(xiāo)售量(件)
0
1
2
3
頻數(shù)
1
5
9
5
 
試銷(xiāo)結(jié)束后(假設(shè)該商品的日銷(xiāo)售量的分布規(guī)律不變),設(shè)某天開(kāi)始營(yíng)業(yè)時(shí)有該商品3件,當(dāng)天營(yíng)業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存貨少于2件,則當(dāng)天進(jìn)貨補(bǔ)充至3件,否則不進(jìn)貨,將頻率視為概率。
(1)求當(dāng)天商品不進(jìn)貨的概率;
(2)記X為第二天開(kāi)始營(yíng)業(yè)時(shí)該商品的件數(shù),求X的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2011•山東)甲、乙兩校各有3名教師報(bào)名支教,期中甲校2男1女,乙校1男2女.
(1)若從甲校和乙校報(bào)名的教師中各任選1名,寫(xiě)出所有可能的結(jié)果,并求選出的2名教師性別相同的概率;
(2)若從報(bào)名的6名教師中任選2名,寫(xiě)出所有可能的結(jié)果,并求選出的2名教師來(lái)自同一學(xué)校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

將一枚硬幣拋擲6次,求正面次數(shù)與反面次數(shù)之差ξ的概率分布列,并求出ξ的期望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案