【題目】在平面直角坐標系中,橢圓的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線經(jīng)過橢圓的右焦點.
(1)求實數(shù)的值;
(2)設直線與橢圓相交于兩點,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知橢圓經(jīng)過點,且其左右焦點的坐標分別是,.
(1)求橢圓的離心率及標準方程;
(2)設為動點,其中,直線經(jīng)過點且與橢圓相交于,兩點,若為的中點,是否存在定點,使恒成立?若存在,求點的坐標;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M,N均在直線x=5上.圓弧C1的圓心是坐標原點O,半徑為13;圓弧C2過點A(29,0).
(1)求圓弧C2的方程.
(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左,右焦點分別為F1, F2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2于點M.
(1)求點M的軌跡的方程;
(2)設與x軸交于點Q, 上不同于點Q的兩點R、S,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某運動員射擊一次所得環(huán)數(shù)的分布列如下:
8 | 9 | 10 | |
0.4 | 0.4 | 0.2 |
現(xiàn)進行兩次射擊,且兩次射擊互不影響,以該運動員兩次射擊中最高環(huán)數(shù)作為他的成績,記為.
(1)求該運動員兩次命中的環(huán)數(shù)相同的概率;
(2)求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某企業(yè)的某種產(chǎn)品中抽取件,測量這些產(chǎn)品的一項質量指標值,由測量結果得如下頻率分布直方圖:
(Ⅰ)求這件產(chǎn)品質量指標值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表,記作,);
(Ⅱ)由頻率分布直方圖可以認為,這種產(chǎn)品的質量指標值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)若使的產(chǎn)品的質量指標值高于企業(yè)制定的合格標準,則合格標準的質量指標值大約為多少?
(ii)若該企業(yè)又生產(chǎn)了這種產(chǎn)品件,且每件產(chǎn)品相互獨立,則這件產(chǎn)品質量指標值不低于的件數(shù)最有可能是多少?
附:參考數(shù)據(jù)與公式:,;若,則①;②;③.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設池底長方形的長為x米.
(Ⅰ)求底面積,并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設計水池能使總造價最低?最低造價是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)若,且,則的取值范圍是______.
(2)若,,且,則的取值范圍是______.
(3)已知,且,則的最小值是______.
(4)已知實數(shù),,若,,且,則的最小值______.
(5)已知實數(shù),,若,,則的最小值______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知P(,1),Q(cosx,sinx),O為坐標原點,函數(shù)f(x).
(1)求f(x)的解析式及最小正周期;
(2)若A為△ABC的內(nèi)角,f(A)=4,BC=3,△ABC的面積為,求AB+AC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com