某電視臺(tái)有A、B兩種智力闖關(guān)游戲,甲、乙、丙、丁四人參加,其中甲乙兩人各自獨(dú)立進(jìn)行游戲A,丙丁兩人各自獨(dú)立進(jìn)行游戲B.已知甲、乙兩人各自闖關(guān)成功的概率均為,丙、丁兩人各自闖關(guān)成功的概率均為.
(I )求游戲A被闖關(guān)成功的人數(shù)多于游戲B被闖關(guān)成功的人數(shù)的概率;
(II) 記游戲A、B被闖關(guān)成功的總?cè)藬?shù)為,求的分布列和期望.
(1)(2)E=   
(I )分情況列游戲A被闖關(guān)成功的人數(shù)多于游戲B被闖關(guān)成功的人數(shù)包含的事件;(II)確定的取值,分別求概率,寫出分布列并求期望。
解:(I)設(shè)“i個(gè)人游戲A闖關(guān)成功”為事件Ai(i=0,1,2),“j個(gè)人游戲B闖關(guān)成功”為事件Bj(j=0,1,2),
則“游戲A被闖關(guān)成功的人數(shù)多于游戲B被闖關(guān)的人數(shù)”為A1B0+A2B1+A2B0
∴ P(A1B0+A2B1+A2B0)
=P(A1B0)+P(A2B1)+P(A2B0)
=P(A1)·P(B0)+P(A2)·P(B1)+P(A2)·P(B0)
=
.即游戲A被闖關(guān)成功的人數(shù)多于游戲B被闖關(guān)的人數(shù)的概率為.……4分
(II)由題設(shè)可知:ξ=0,1,2,3,4.

,

,

的分布列為:

0
1
2
3
4
P





                 ……………………………………………………………………10分
∴ E=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲與乙兩人擲硬幣,甲用一枚硬幣擲3次,記正面朝上的次數(shù)為;乙用這枚硬幣擲2次,記正面朝上的次數(shù)為。
(1)分別求的期望;
(2)規(guī)定:若,則甲獲勝;若,則乙獲勝,分別求出甲和乙獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

5名工人獨(dú)立地工作,假定每名工人在1小時(shí)內(nèi)平均12分鐘需要電力(即任一時(shí)刻需要電力的概率為12/60)
(1)設(shè)X為某一時(shí)刻需要電力的工人數(shù),求 X的分布列及期望;
(2)如果同一時(shí)刻最多能提供3名工人需要的電力,求電力超負(fù)荷的概率,并解釋實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)有朋自遠(yuǎn)方來,他乘火車、輪船、汽車、飛機(jī)來的概率分別為0.3,0.2,0.1,0.4.
試問:(1)他乘火車或乘飛機(jī)來的概率;
(2)他不乘輪船來的概率;
(3)如果他來的概率為0.5,請(qǐng)問他有可能是乘何種交通工具來的.
即他不乘輪船來的概率為0.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)盒子里裝有相同大小的黑球10個(gè),紅球12個(gè),白球4個(gè).從中任取兩個(gè),其中白球的個(gè)數(shù)記為,則下列算式中等于的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.【必做題】本題滿分10分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
由數(shù)字1,2,3,4組成五位數(shù),從中任取一個(gè).
(1)求取出的數(shù)滿足條件:“對(duì)任意的正整數(shù),至少存在另一個(gè)正整數(shù)
,且,使得”的概率;
(2)記為組成該數(shù)的相同數(shù)字的個(gè)數(shù)的最大值,求的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

從某批產(chǎn)品中,有放回地抽取產(chǎn)品2次,每次隨機(jī)抽取1件,假設(shè)事件A:“取出的2件產(chǎn)品中至多有1件是二等品”的概率為0.84.
(Ⅰ)求事件“從該批產(chǎn)品中任取1件產(chǎn)品,取到的是二等品”的概率p;
(Ⅱ)若從20件該產(chǎn)品中任意抽取3件,求事件B:“取出的3件產(chǎn)品中至少有一件二等品”的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)已知某種從太空帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個(gè)小組分別獨(dú)立開展該種子的發(fā)芽實(shí)驗(yàn),每次實(shí)驗(yàn)種一粒種子,假定某次實(shí)驗(yàn)種子發(fā)芽則稱該次實(shí)驗(yàn)是成功的,如果種子沒有發(fā)芽,則稱該次實(shí)驗(yàn)是失敗的.
(1) 第一小組做了三次實(shí)驗(yàn),求實(shí)驗(yàn)成功的平均次數(shù);
(2) 第二小組連續(xù)進(jìn)行實(shí)驗(yàn),求實(shí)驗(yàn)首次成功時(shí)所需的實(shí)驗(yàn)次數(shù)的期望;
(3)兩個(gè)小組分別進(jìn)行2次試驗(yàn),求至少有2次實(shí)驗(yàn)成功的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有10道單項(xiàng)選擇題,每題有4個(gè)選項(xiàng)。某人隨機(jī)選其中一個(gè)答案(每個(gè)選項(xiàng)被選出的可能性相同),求答對(duì)多少題的概率最大?并求出此種情況下概率的大小.(保留兩位有效數(shù)字)

查看答案和解析>>

同步練習(xí)冊(cè)答案