【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的方程為

(1)求曲線的普通方程及直線的直角坐標(biāo)方程;

(2)設(shè)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值.

【答案】(1)曲線的普通方程為,直線的直角坐標(biāo)方程為(2)

【解析】試題分析:(1)利用平方法可得曲線的普通方程,利用兩角差的正弦公式及可得直線的直角坐標(biāo)方程;(2),則點(diǎn)到直線的距離為,利用輔助角公式及三角函數(shù)的有界性可得結(jié)果.

試題解析:(1)因?yàn)?/span>,所以曲線的普通方程為,

展開得,即,

因此直線的直角坐標(biāo)方程為

(2)設(shè),則點(diǎn)到直線的距離為

等號成立當(dāng)且僅當(dāng),即,即時成立,

因此點(diǎn)到直線的距離的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點(diǎn).

(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c的圖像如圖,直線y=0在原點(diǎn)處與函數(shù)圖像相切,且此切線與函數(shù)圖像所圍成的區(qū)域(陰影)面積為
(1)求f(x)的解析式
(2)若常數(shù)m>0,求函數(shù)f(x)在區(qū)間[﹣m,m]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知f(x)=x2﹣2x+2,在[ ,m2﹣m+2]上任取三個數(shù)a,b,c,均存在以 f(a),f(b),f(c)為三邊的三角形,則m的取值范圍為(
A.(0,1)
B.[0,
C.(0, ]
D.[ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于,兩點(diǎn).

(Ⅰ)求曲線的直角坐標(biāo)方程及直線恒過的定點(diǎn)的坐標(biāo);

(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是半徑為2的半球的直徑, 為球面上的兩點(diǎn)且,

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】朱世杰是歷史上最未打的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)一五間”,有如下問題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日?”.其大意為:“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始,每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天發(fā)大米3升,共發(fā)出大米40392升,問修筑堤壩多少天”.在這個問題中,前5天應(yīng)發(fā)大米( )

A. 894升 B. 1170升 C. 1275升 D. 1457升

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)在5次英語口語測試中的成績統(tǒng)計如圖的莖葉圖所示.

(注:樣本數(shù)據(jù)x1 , x2 , …,xn的方差s2= [ + +…+ ],其中 表示樣本均值)
(1)現(xiàn)要從中選派一人參加英語口語競賽,從兩同學(xué)的平均成績和方差分析,派誰參加更合適;
(2)若將頻率視為概率,對學(xué)生甲在今后的三次英語口語競賽成績進(jìn)行預(yù)測,記這三次成績中高于80分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的有(
①冪函數(shù)的圖象一定不過第四象限;
②已知常數(shù)a>0且a≠1,則函數(shù)f(x)=ax1﹣1恒過定點(diǎn)(1,0);
③若存在x1 , x2∈I,當(dāng)x1<x2時,f(x1)<f(x2),則y=f(x)在I上是增函數(shù);
的單調(diào)減區(qū)間是(﹣∞,0)∪(0,+∞).
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

同步練習(xí)冊答案