若橢圓過(guò)點(diǎn)(-2,),則其焦距為(  )

A.2             B.2            C. 4             D. 4 

C


解析:

將點(diǎn)的坐標(biāo)代入,求得.所以,。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且橢圓過(guò)點(diǎn)A(-2,0),B(2,0),C(1,
32
)三點(diǎn).
(1)求橢圓E的方程;
(2)若點(diǎn)D為橢圓E上不同于A,B的任意一點(diǎn),F(xiàn)(-1,0),H(1,0),當(dāng)△DFH內(nèi)切圓的面積最大時(shí),求內(nèi)切圓圓心的坐標(biāo);
(3)若直線l:y=k(x+4),(k≠0)與橢圓E交于M,N兩點(diǎn),點(diǎn)M關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為P,試問(wèn)直線PN能否過(guò)定點(diǎn)F(-1,0),若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),則稱(chēng)以原點(diǎn)為圓心,r=
a2-b2
的圓為橢圓C的“知己圓”.
(Ⅰ)若橢圓過(guò)點(diǎn)(0,1),離心率e=
6
3
;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過(guò)點(diǎn)(0,m)且斜率為1的直線截其“知己圓”的弦長(zhǎng)為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=8x與橢圓
x2
a2
+
y2
b2
=1
有公共焦點(diǎn)F,且橢圓過(guò)點(diǎn)D(-
2
,
3
).
(1)求橢圓方程;
(2)點(diǎn)A、B是橢圓的上下頂點(diǎn),點(diǎn)C為右頂點(diǎn),記過(guò)點(diǎn)A、B、C的圓為⊙M,過(guò)點(diǎn)D作⊙M的切線l,求直線l的方程;
(3)過(guò)點(diǎn)A作互相垂直的兩條直線分別交橢圓于點(diǎn)P、Q,則直線PQ是否經(jīng)過(guò)定點(diǎn),若是,求出該點(diǎn)坐標(biāo),若不經(jīng)過(guò),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•麗水一模)已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓過(guò)點(diǎn)P(2,3),且它的離心率e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓(x+1)2+y2=1相切的直線l:y=kx+t交橢圓于M,N兩點(diǎn),若橢圓上一點(diǎn)C滿足
OM
+
ON
OC
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案