17.若(x+$\frac{1}{2x}$)n的展開式中前3項的系數(shù)成等差數(shù)列,則其展開式中所有項的二項式系數(shù)之和是(  )
A.28B.27C.1D.0

分析 利用二項式展開式的通項公式求出展開式中前3項的系數(shù),再根據(jù)它們成等差數(shù)列求得n的值,可得展開式中所有項的二項式系數(shù)之和為2n的值.

解答 解:∵(x+$\frac{1}{2x}$)n的展開式中前3項的系數(shù)分別為1,$\frac{1}{2}$n,${C}_{n}^{2}$•${(\frac{1}{2})}^{2}$,
根據(jù)它們成等差數(shù)列,可得1+${C}_{n}^{2}$•${(\frac{1}{2})}^{2}$=n,∴n=8,
則其展開式中所有項的二項式系數(shù)之和為2n=28,
故選:A.

點評 本題主要考查二項式定理的應用,二項式系數(shù)的性質,二項式展開式的通項公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面ABCD是正方形,PD⊥底面ABCD,PD=AB,
(1)若E為PA的中點,求異面直線AC與BE所成角的余弦值;
(2)若點F在側棱PC上,二面角F-BD-C的余弦值為$\frac{\sqrt{3}}{3}$,求$\frac{PF}{PC}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=x2+mx+n,且y=f(x+2)的圖象關于y軸對稱,則大小關系正確的是( 。
A.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)B.f(1)<f($\frac{7}{2}$)<f($\frac{5}{2}$)C.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)D.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知$\overrightarrow a,\;\overrightarrow b$為同向單位向量,若$\overrightarrow a•\overrightarrow b=\frac{{1+4{k^2}}}{4k}$(k>0),則k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,莖葉圖記錄了某城市甲、乙兩個觀測點連續(xù)三天觀測到的空氣質量指數(shù)(AQI).乙觀測點記錄中有一個數(shù)字模糊無法確認,已知該數(shù)是0,1,…,9中隨機的一個數(shù),并在圖中以a表示.
(Ⅰ)求乙觀測點記錄的AQI的平均值超過甲觀測點記錄的AQI的平均值的概率;
(Ⅱ)當a=2時,分別從甲、乙兩觀測點記錄的數(shù)據(jù)中各隨機抽取一天的觀測值,記這兩觀測值之差的絕對值為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某用水量較大的企業(yè)為積極響應政府號召的“節(jié)約用水,我們共同的責任”的倡議,對生產設備進行技術改造,下表提供了該企業(yè)節(jié)約用水技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產用水y(噸)的幾組對照數(shù)據(jù):
x1234
y0.40.91.11.6
(1)若x,y之間是線性相關,請根據(jù)表中提供的數(shù)據(jù),求y關于x的線性回歸方程y=bx+a;
(2)已知該廠技術改造前100噸甲產品的生產用水為120噸,試根據(jù)(1)中求出的線性回歸方程,預測技術改造后生產100噸甲產品的用水量比技術改造前減少了多少噸?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{1}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.等比數(shù)列{an}的各項均為正數(shù),且a2=4,a42=4a1a5
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=log2a1+log2a2+log2a3+…+log2an,求數(shù)列{$\frac{1}{_{n}}$}的前n項和Sn,并證明:Sn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,$\overrightarrow{a}=(1,1)$,$\overrightarrow{a}+3\overrightarrow=(4,-2)$,則cosθ=( 。
A.0B.$\frac{3}{5}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,過右焦點F2的直線l與C相交于P,Q兩點,若△F1PQ的周長為短軸長的2$\sqrt{2}$倍,拋物線y2=2$\sqrt{2}$x的焦點F滿足$\overrightarrow{{F}_{1}F}$=3$\overrightarrow{F{F}_{2}}$.
(I) 求橢圓C的方程;
(Ⅱ)若$\overrightarrow{P{F}_{2}}$=3$\overrightarrow{{F}_{2}Q}$,求直線l的方程;
(Ⅲ)若直線l的傾斜角α∈[$\frac{π}{6}$,$\frac{π}{2}$],求△F1PQ的內切圓的半徑r的取值范圍.

查看答案和解析>>

同步練習冊答案