7.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{k-{2^{-x}}}}{{{2^{-x+1}}+2}}$是奇函數(shù).
(1)求k的值;
(2)判斷并證明函數(shù)f(x)的單調(diào)性.

分析 (1)根據(jù)定義域?yàn)镽的奇函數(shù)f(0)=0,求出k的值;
(2)函數(shù)f(x)是定義域R上的增函數(shù),利用單調(diào)性定義證明即可.

解答 解:(1)定義域?yàn)镽的函數(shù)$f(x)=\frac{{k-{2^{-x}}}}{{{2^{-x+1}}+2}}$是奇函數(shù),
則f(0)=0,即$\frac{k-1}{2+2}$=0,
解得k=1;
(2)函數(shù)f(x)=$\frac{1{-2}^{-x}}{{2}^{-x+1}+2}$=$\frac{{2}^{x}-1}{2+2{•2}^{x}}$=$\frac{1}{2}$-$\frac{1}{1{+2}^{x}}$,是定義域R上的增函數(shù);
證明如下:任取x1、x2∈R,且x1<x2,
則f(x1)-f(x2)=($\frac{1}{2}$-$\frac{1}{1{+2}^{{x}_{1}}}$)-($\frac{1}{2}$-$\frac{1}{1{+2}^{{x}_{2}}}$)
=$\frac{1}{1{+2}^{{x}_{2}}}$-$\frac{1}{1{+2}^{{x}_{1}}}$
=$\frac{{2}^{{x}_{1}}{-2}^{{x}_{2}}}{(1{+2}^{{x}_{1}})(1{+2}^{{x}_{2}})}$,
由x1<x2,得${2}^{{x}_{1}}$<${2}^{{x}_{2}}$,
∴${2}^{{x}_{1}}$-${2}^{{x}_{2}}$<0,且1+${2}^{{x}_{1}}$>0,1+${2}^{{x}_{2}}$>0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴函數(shù)f(x)是定義域R上的單調(diào)增函數(shù).

點(diǎn)評(píng) 本題考查了函數(shù)奇偶性與單調(diào)性的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知定義在正實(shí)數(shù)集上的函數(shù)f(x)、g(x),g(x)≠0,f(x)=logax•g(x)(a>0且a≠1),f′(x)g(x)<f(x)g′(x),若關(guān)于t的方程[g(4)•t]2+1=f(4)•t有唯一解,則a的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.$\frac{1}{2}$或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}中,${a_{n+1}}=\frac{a_n}{{1+3{a_n}}},{a_1}=2$,則 a20=$\frac{2}{115}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線L經(jīng)過點(diǎn)P($\frac{1}{2}$,1),傾斜角$α=\frac{π}{6}$,在極坐標(biāo)系下,圓C的極坐標(biāo)方程為$ρ=\sqrt{2}cos({θ-\frac{π}{4}})$.
(1)寫出直線l的參數(shù)方程,并把圓C的方程化為直角坐標(biāo)方程;
(2)設(shè)l與圓C相交于A,B兩點(diǎn),求點(diǎn)P到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對(duì)于集合M,N,定義:M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M).設(shè)集合M={y|y=x2-4x+3,x∈R},N={y|y=-2x,x∈R},則M⊕N=(  )
A.(-∞,-1)∪[0,+∞)B.[-1,0)C.(-1,0]D.(-∞,-1]∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}滿足an=$\left\{\begin{array}{l}{(\frac{1}{3}-a)n+8,n>8}\\{{a}^{n-7},n≤8}\end{array}\right.$,若對(duì)于任意的n∈N*都有an>an+1,則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{3}$)B.(0,$\frac{1}{2}$)C.[$\frac{1}{2}$,1)D.($\frac{1}{3}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=x3+x+1(x∈R),若f(a)=2,則f(-a)的值為(  )
A.3B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.命題“?a∈(0,1),直線(2x-1)x+ylga+1=0的斜率k>0”是真命題(填“真”或“假”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以(2,-1)為圓心且與直線x-y+1=0相切的圓的方程為( 。
A.(x-2)2+(y+1)2=8B.(x-2)2+(y+1)2=4C.(x+2)2+(y-1)2=8D.(x+2)2+(y-1)2=4

查看答案和解析>>

同步練習(xí)冊(cè)答案