在兩個(gè)各項(xiàng)均為正數(shù)的數(shù)列an、bn(n∈N*)中,已知an、bn2、an+1成等差數(shù)列,并且bn2、an+1、bn+12成等比數(shù)列.
(Ⅰ)證明:數(shù)列bn是等差數(shù)列;
(Ⅱ)若a1=2,a2=6,設(shè)cn=(an-n2)•qbn(q>0為常數(shù)),求數(shù)列cn的前n項(xiàng)和Sn
分析:(Ⅰ)根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì)聯(lián)立方程求得an+1=bnbn+1,進(jìn)而求得an=bn-1bn,代入2bn2=an+an+1,求得2bn=bn-1+bn+1,判斷出數(shù)列bn是等差數(shù)列.
(Ⅱ)2bn2=an+an+1求得b1,根據(jù)(1)中的結(jié)論求得數(shù)列{bn}的通項(xiàng)公式,進(jìn)而根據(jù)an=bn-1bn,求得an.進(jìn)而Cn的通項(xiàng)公式可得先看當(dāng)q=1時(shí),Cn=n,進(jìn)而根據(jù)等差數(shù)列的求和公式求得前n項(xiàng)的和;再看q≠0時(shí),應(yīng)用錯(cuò)位相減法求得前n項(xiàng)的和.最后綜合可得答案.
解答:解:(I)由題意知
| 2bn2=an+an+1 | an+12=bn2•bn+12 |
| |
,
又∵數(shù)列a
n、b
n各項(xiàng)都是正數(shù),∴a
n+1=b
nb
n+1,則a
n=b
n-1b
n代入2b
n2=a
n+a
n+1,得2b
n2=b
n-1b
n+b
nb
n+1即2b
n=b
n-1+b
n+1,所以數(shù)列b
n是等差數(shù)列.
(II)∵a
1=2,a
2=6,又2b
n2=a
n+a
n+1,得2b
12=a
1+a
2=8,解得b
1=2
又∵a
2=b
1b
2=6∴b
2=3,由(I)知數(shù)列b
n是等差數(shù)列,則公差d=b
2-b
1=1
∴b
n=b
1+(n-1)d=2+n-1=n+1,
又a
n=b
n-1b
n,得a
n=n(n+1)=n
2+n,
∴
cn=(an-n2)•qbn=nqn+1,
則當(dāng)q=1時(shí),c
n=n,此時(shí)
Sn=;
當(dāng)q≠1時(shí),S
n=c
1+c
2++c
n=1×q
2+2×q
3++nq
n+1,①
所以qS
n=qc
1+qc
2++qc
n=1×q
3+2×q
4++nq
n+2②
由①-②,得
(1-q)Sn=q2+q3+qn+1-nqn+2=-nqn+2,
即
Sn=-綜上可知,
Sn= 點(diǎn)評(píng):本題主要考查了數(shù)列的求和問(wèn)題.考查了學(xué)生對(duì)等比數(shù)列和等差數(shù)列基礎(chǔ)知識(shí)的掌握.