【題目】某種籠具由內,外兩層組成,無下底面,內層和外層分別是一個圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時需要將圓錐的頂端剪去,剪去部分和接頭忽略不計,已知圓柱的底面周長為,高為,圓錐的母線長為.

1)求這種籠具的體積(結果精確到0.1);

2)現(xiàn)要使用一種紗網(wǎng)材料制作50籠具,該材料的造價為每平方米8元,共需多少元?

【答案】1;(2

【解析】

1)根據(jù)籠具的構造,可知其體積等于圓柱的體積減去圓錐的體積,即可求出;

2)求出籠具的表面積,即可求出50籠具的總造價.

設圓柱的底面半徑為,高為;圓錐的母線長為,高為,

根據(jù)題意可知:

1,cm,cm,

所以籠具的體積cm

2)圓柱的側面積cm,圓柱的底面積cm,

圓錐的側面積cm,所以籠具的表面積為 cm,

故造50籠具的總造價:元.

答:這種籠具的體積約為 cm,生產50籠具的總造價為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某書店剛剛上市了《中國古代數(shù)學史》,銷售前該書店擬定了5種單價進行試銷,每本單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

銷量(冊)

1)已知銷量與單價具有線性相關關系,求關于的線性回歸方程;

2)若該書每本的成本為元,要使得售賣時利潤最大,請利用所求的線性相關關系確定單價應該定為多少元?(結果保留到整數(shù))

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓錐的軸截面為等腰為底面圓周上一點。

(1)若的中點為,求證: 平面;

(2)如果,求此圓錐的體積;

(3)若二面角大小為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在正整數(shù)集上的函數(shù),且滿足:當成立時,總可推出 成立那么下列命題中正確的是(

A.成立,則當時均有成立

B.成立,則當時均有成立

C.成立,則當時均有成立

D.成立,則當時均有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在教材中,我們已研究出如下結論:平面內條直線最多可將平面分成個部分.現(xiàn)探究:空間內個平面最多可將空間分成多少個部分,.設空間內個平面最多可將空間分成個部分.

(1)求的值;

(2)用數(shù)學歸納法證明此結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,為橢圓的左、右焦點,點在直線上且不在軸上,直線與橢圓的交點分別為,為坐標原點.

設直線的斜率為,證明:

問直線上是否存在點,使得直線的斜率滿足?若存在,求出所有滿足條件的點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代有著輝煌的數(shù)學研究成果,其中的《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,有豐富多彩的內容,是了解我國古代數(shù)學的重要文獻,這5部專著中有3部產生于漢、魏、晉、南北朝時期,某中學擬從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,點,分別為橢圓的左右頂點,直線于點,是等腰直角三角形,且

(1)求的方程;

(2)設過點的動直線相交于兩點,為坐標原點.當為直角時,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線E,圓C

若過拋物線E的焦點F的直線l與圓C相切,求直線l方程;

的條件下,若直線l交拋物線EAB兩點,x軸上是否存在點使為坐標原點?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案