【題目】函數(shù)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.

(Ⅰ)求函數(shù)的解析式和當的單調(diào)減區(qū)間;

(Ⅱ)的圖象向右平行移動個長度單位,再向下平移1個長度單位,得到的圖象,用“五點法”作出內(nèi)的大致圖象.

【答案】(Ⅰ);(Ⅱ)圖象見解析.

【解析】

() 由函數(shù)的最大值為,可求得的值,由圖象相鄰兩條對稱軸之間的距離為可求得周期,從而確定的值,然后利用正弦函數(shù)的單調(diào)性解不式可得單調(diào)減區(qū)間,取特殊值即可得結果;()利用函數(shù)圖象的平移變換法則,可得到的解析式,列表、描點、作圖即可得結果.

(Ⅰ)∵函數(shù)f(x)的最大值是3,

A+1=3,即A=2.

∵函數(shù)圖象的相鄰兩條對稱軸之間的距離為,

∴最小正周期T=π,

∴ω=2.所以f(x)=2sin(2x-)+1

+2kπ≤2x+2kπ,kZ,

+kπ≤x≤+kπ,kZ,∵x[0,π],

f(x)的單調(diào)減區(qū)間為[,].

(Ⅱ)依題意得g(x)=f(x-)-1=2sin(2x-),

列表得:

描點

連線得g(x)在[0,π]內(nèi)的大致圖象.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為的正方體中,,分別是的中點.

)求異面直線所成角的余弦值.

)在棱上是否存在一點,使得二面角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的圓心為原點,且與直線 相切.

(1)求圓C的方程;

(2)點在直線上,過點引圓C的兩條切線 ,切點為, ,求證:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)在其定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)為“可拆分函數(shù)”.

(1)試判斷函數(shù)是否為“可拆分函數(shù)”?并說明你的理由;

(2)證明:函數(shù)為“可拆分函數(shù)”;

(3)設函數(shù)為“可拆分函數(shù)”,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=3sinx+2cosx+1.若實數(shù)a,b,c使得af(x)+bf(x﹣c)=1對任意實數(shù)x恒成立,則 的值為(
A.﹣1
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100位學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是、、、.

(1)求圖中的值

(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;

(3)若這100名學生的語文成績某些分數(shù)段的人數(shù)()與數(shù)學成績相應分數(shù)段的人數(shù)()之比如下表所示求數(shù)學成績在之外的人數(shù).

分數(shù)段

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用分期付款方式購買家用電器一件,價格為1150元,購買當天先付150元,以后每月這一天都交付50元,并加付欠款利息,月利率為1%.若交付150元后的第一個月開始算分期付款的第一個月,全部欠款付清后,買這件家電實際付款______元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有人說:“擲一枚骰子一次得到的點數(shù)是2的概率是,這說明擲一枚骰子6次會出現(xiàn)一次點數(shù)是2.對此說法,同學中出現(xiàn)了兩種不同的看法:一些同學認為這種說法是正確的.他們的理由是:因為擲一枚骰子一次得到點數(shù)是2的概率是,所以擲一枚骰子6次得到一次點數(shù)是2的概率P=×6=1,擲一枚骰子6次會出現(xiàn)一次點數(shù)是2”是必然事件,一定發(fā)生.還有一些同學覺得這種說法是錯誤的,但是他們卻講不出是什么理由來.你認為這種說法對嗎?請說出你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐,底面為菱形, 平面, , 分別是的中點.

(Ⅰ)證明: ;

(Ⅱ)若上的動點, 與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案