【題目】已知四棱錐的底面ABCD是菱形,平面ABCD,,,F,G分別為PD,BC中點(diǎn),.
(Ⅰ)求證:平面PAB;
(Ⅱ)求三棱錐的體積;
(Ⅲ)求證:OP與AB不垂直.
【答案】(Ⅰ)見解析(Ⅱ)(Ⅲ)見解析
【解析】
(Ⅰ)連接,,由已知結(jié)合三角形中位線定理可得平面,再由面面平行的判斷可得平面平面,進(jìn)而可得平面;
(Ⅱ)首先證明平面,而為的中點(diǎn),然后利用等積法求三棱錐的體積;
(Ⅲ)直接利用反證法證明與不垂直.
(Ⅰ)如圖,連接,
∵是中點(diǎn),是中點(diǎn),
∴,而平面,平面,
∴平面,
又∵是中點(diǎn),是中點(diǎn),
∴,而平面,平面,
∴平面,又
∴平面平面,即平面.
(Ⅱ)∵底面,
∴,又四邊形為菱形,
∴,又,
∴平面,而為的中點(diǎn),
∴.
(Ⅲ)假設(shè),又,且,
∴平面,則,與矛盾,
∴假設(shè)錯誤,故與不垂直.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,某市為了制定合理的節(jié)水方案,對家庭用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100個家庭的月均用水量(單位:t),將數(shù)據(jù)按照,,,,分成5組,制成了如圖所示的頻率分布直方圖.
(1)記事件A:“全市家庭月均用水量不低于6t”,求的估計值;
(2)假設(shè)同組中的每個數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,求全市家庭月均用水量平均數(shù)的估計值(精確到0.01);
(3)求全市家庭月均用水量的25%分位數(shù)的估計值(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)若存在,對任意,使得恒成立,求實(shí)數(shù)的取值范圍;
(3)已知函數(shù)區(qū)間上的最小值為1,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間四邊形ABCD,∠BAC=,AB=AC=2,BD=CD=6,且平面ABC⊥平面BCD,則空間四邊形ABCD的外接球的表面積為( )
A. 60π B. 36π C. 24π D. 12π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有1400名考生參加市模擬考試,現(xiàn)采取分層抽樣的方法從
文、理考生中分別抽取20份和50份數(shù)學(xué)試卷,進(jìn)行成績分析,
得到下面的成績頻數(shù)分布表:
分?jǐn)?shù)分組 | [0,30) | [30,60) | [60,90) | [90,120) | [120,150] |
文科頻數(shù) | 2 | 4 | 8 | 3 | 3 |
理科頻數(shù) | 3 | 7 | 12 | 20 | 8 |
(1)估計文科數(shù)學(xué)平均分及理科考生的及格人數(shù)(90分為及格分?jǐn)?shù)線);
(2)在試卷分析中,發(fā)現(xiàn)概念性失分非常嚴(yán)重,統(tǒng)計結(jié)果如下:
文理 失分 | 文 | 理 |
概念 | 15 | 30 |
其它 | 5 | 20 |
問是否有90%的把握認(rèn)為概念失分與文、理考生的不同有關(guān)?(本題可以參考獨(dú)立性檢驗(yàn)臨界值表:)
( | <>0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】藥材人工種植技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:人工種植藥材時,某種藥材在一定的條件下,每株藥材的年平均生長量單位:千克是每平方米種植株數(shù)x的函數(shù).當(dāng)x不超過4時,v的值為2;當(dāng)時,v是x的一次函數(shù),其中當(dāng)x為10時,v的值為4;當(dāng)x為20時,v的值為0.
當(dāng)時,求函數(shù)v關(guān)于x的函數(shù)表達(dá)式;
當(dāng)每平方米種植株數(shù)x為何值時,每平方米藥材的年生長總量單位:千克取得最大值?并求出這個最大值.年生長總量年平均生長量種植株數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售某種活蝦,根據(jù)以往的銷售情況,按日需量x(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500] 進(jìn)行分組,得到如圖所示的頻率分布直方圖.這種活蝦經(jīng)銷商進(jìn)價成本為每公斤15元,當(dāng)天進(jìn)貨當(dāng)天以每公斤20元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫.某水產(chǎn)品經(jīng)銷商某天購進(jìn)了300公斤這種活蝦,設(shè)當(dāng)天利潤為Y元.
(1)求Y關(guān)于x的函數(shù)關(guān)系式;
(2)結(jié)合直方圖估計利潤Y不小于300元的概率;
(3)在直方圖的日需量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個值,日需量落入該區(qū)間的頻率作為日需量取該區(qū)間中點(diǎn)值的概率,求Y的平均估計值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求的值域;
(2)求函數(shù)的最小正周期及函數(shù)的單調(diào)區(qū)間;
(3)將函數(shù)的圖像向右平移個單位后,再將得到的圖像上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)保持不變,得到函數(shù)的圖像,求函數(shù)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題,其中所有正確命題的序號是__________.
①拋物線的準(zhǔn)線方程為;
②過點(diǎn)作與拋物線只有一個公共點(diǎn)的直線僅有1條;
③是拋物線上一動點(diǎn),以為圓心作與拋物線準(zhǔn)線相切的圓,則此圓一定過定點(diǎn).
④拋物線上到直線距離最短的點(diǎn)的坐標(biāo)為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com