【題目】已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時,f(x)=lnx﹣ax(a> ),當(dāng)x∈(﹣2,0)時,f(x)的最小值為1,則a的值等于

【答案】1
【解析】解:∵f(x)是奇函數(shù),x∈(﹣2,0)時,f(x)的最小值為1,
∴f(x)在(0,2)上的最大值為﹣1,
當(dāng)x∈(0,2)時,f′(x)= ﹣a,
令f′(x)=0得x= ,又a> ,∴0< <2,
令f′(x)>0,則x< ,∴f(x)在(0, )上遞增;令f′(x)<0,則x>
∴f(x)在( ,2)上遞減,∴f(x)max=f( )=ln ﹣a =﹣1,∴l(xiāng)n =0,得a=1.
所以答案是:1.
【考點精析】解答此題的關(guān)鍵在于理解奇偶性與單調(diào)性的綜合的相關(guān)知識,掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x﹣y+1=0,當(dāng)x= 時,y=f(x)有極值.
(1)求a、b、c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ +c是奇函數(shù),且滿足f(1)= ,f(2)=
(1)求a,b,c的值;
(2)試判斷函數(shù)f(x)在區(qū)間(0, )上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某電子元件進行壽命追蹤調(diào)查,情況如下.

壽命(h)

100~200

200~300

300~400

400~500

500~600

個 數(shù)

20

30

80

40

30


(1)列出頻率分布表;
(2)畫出頻率分布直方圖;
(3)估計元件壽命在100~400h以內(nèi)的在總體中占的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)有4個零點,其圖象如下圖,和圖象吻合的函數(shù)解析式是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+blnx在x=1處有極值
(1)求a,b的值;
(2)求函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2x+2 sinxcosx+a,且當(dāng) 時,f(x)的最小值為2.
(1)求a的值,并求f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的 ,再把所得圖象向右平移 個單位,得到函數(shù)y=g(x),求方程g(x)=2在區(qū)間 上的所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若時取到極值,求的值及的圖象在處的切線方程;

(2)若時恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案