【題目】在直角坐標(biāo)系中,已知點(diǎn),,動點(diǎn)滿足直線與的斜率之積為.記的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求和的直角坐標(biāo)方程;
(2)求上的點(diǎn)到距離的最小值.
【答案】(1);;(2)
【解析】
(1)根據(jù)題意列出方程可求得曲線的方程,利用極坐標(biāo)與直角坐標(biāo)互化公式可得直線的直角坐標(biāo)方程;
(2)設(shè),為曲線上一點(diǎn),利用點(diǎn)到直線的距離公式和逆用兩角差的余弦公式,即可求出上的點(diǎn)到距離的最小值.
(1)由題設(shè)得,化簡得
因為直線的極坐標(biāo)方程為,
所以直線的直角坐標(biāo)方程為.
(2)由(1)可設(shè)的參數(shù)方程為,(為參數(shù),),
設(shè),為曲線上一點(diǎn),
所以上的點(diǎn)到的距離為
,
當(dāng)時,取得最小值7.
故上的點(diǎn)到的距離的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果兩個方程的曲線經(jīng)過若干次平移或?qū)ΨQ變換后能夠完全重合,則稱這兩個方程為“互為鏡像方程對”,給出下列四對方程:
①與②與
③與④與
則“互為鏡像方程對”的是( )
A.①②③B.①③④C.②③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱中,,分別是 的中點(diǎn),,為棱上的點(diǎn).
(1)證明:;
(2)是否存在一點(diǎn),使得平面與平面所成銳二面角的余弦值為?若存在,說明點(diǎn)的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)在軸負(fù)半軸上,以為邊做菱形,且菱形對角線的交點(diǎn)在軸上,設(shè)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)過點(diǎn),其中,作曲線的切線,設(shè)切點(diǎn)為,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C所對應(yīng)的分別為a,b,c,且(a+b)(sinA﹣sinB)=(c﹣b)sinC,若a=2,則△ABC的面積的最大值是( )
A.1B.C.2D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖.已知四棱錐的底面為直角梯形,平面平面,,,且,,,的中點(diǎn)分別是,.
(1)求證:平面;
(2)求二面的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)M在橢圓C上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)在直線上,且.證明:過點(diǎn)P且垂直于OQ的直線過C的左焦點(diǎn)F.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com