【題目】已知曲線(xiàn)的方程為:,其中:,且為常數(shù).
(1)判斷曲線(xiàn)的形狀,并說(shuō)明理由;
(2)設(shè)曲線(xiàn)分別與軸,軸交于點(diǎn)(不同于坐標(biāo)原點(diǎn)),試判斷的面積是否為定值?并證明你的判斷;
(3)設(shè)直線(xiàn)與曲線(xiàn)交于不同的兩點(diǎn),且為坐標(biāo)原點(diǎn)),求曲線(xiàn)的方程.
【答案】(1)曲線(xiàn)是以點(diǎn)為圓心, 以為半徑的圓;(2)定值,證明見(jiàn)解析;(3).
【解析】
試題分析:(1)將曲線(xiàn)的方程化為,即可得到曲線(xiàn)的形狀;(2)在曲線(xiàn)的方程中令,得,進(jìn)而得到點(diǎn),計(jì)算的三角形的面積,即可判定面積為定值;(3)由圓過(guò)坐標(biāo)原點(diǎn),且,求得,當(dāng)時(shí),直線(xiàn)與圓相離,舍去,當(dāng)時(shí),即可求解圓的方程.
試題解析:(1)將曲線(xiàn)的方程化為,即.
可知曲線(xiàn)是以點(diǎn)為圓心, 以為半徑的圓.
(2)的面積為定值.證明如下:在曲線(xiàn)的方程中令,得,
得點(diǎn)在曲線(xiàn)方程中令,得,得點(diǎn),( 定值).
(3)圓過(guò)坐標(biāo)原點(diǎn),且,
當(dāng)時(shí), 圓心坐標(biāo)為圓的半徑為,
圓心到直線(xiàn)的距離,
直線(xiàn)與圓相離,不合題意舍去,時(shí)符合題意.
這時(shí)曲線(xiàn)的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且首項(xiàng)a1≠3,an+1=Sn+3n(n∈N*).
(1)求證:數(shù)列{Sn-3n}是等比數(shù)列;
(2)若{an}為遞增數(shù)列,求a1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)函數(shù)與軸交于兩點(diǎn)且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一個(gè)質(zhì)地均勻的正四面體骰子,每個(gè)面上分別標(biāo)有數(shù)字1、2、3、4,將這個(gè)骰子連續(xù)投擲兩次,朝下一面的數(shù)字分別記為,試計(jì)算下列事件的概率:
(1)事件;
(2)事件:函數(shù)在區(qū)間上為增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線(xiàn)的參數(shù)方程為(為參數(shù)).
(1)直線(xiàn)過(guò)且與曲線(xiàn)相切,求直線(xiàn)的極坐標(biāo)方程;
(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),求曲線(xiàn) 上的點(diǎn)到點(diǎn)的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù),),且數(shù)列是首項(xiàng)為2,公差為2的等差數(shù)列.
(1)若,當(dāng)時(shí),求數(shù)列的前項(xiàng)和;
(2)設(shè),如果中的每一項(xiàng)恒小于它后面的項(xiàng),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是矩形,,,,且.
(1)求證:平面平面;
(2)設(shè)是的中點(diǎn),判斷并證明在線(xiàn)段上是否存在點(diǎn),使平面,若存在,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的兩條對(duì)角線(xiàn)相交于點(diǎn), 邊所在直線(xiàn)的方程為,點(diǎn)在邊所在的直線(xiàn)上.
(Ⅰ)求邊所在直線(xiàn)的方程;
(Ⅱ)求矩形外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中為實(shí)數(shù).
(1)是否存在,使得?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(2)若集合中恰有5個(gè)元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com