(本題滿(mǎn)分13分)
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的最小值.
(Ⅱ)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),若函數(shù)的圖象上任意一點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)Q的軌跡恰好是函數(shù)的圖象:
(1)寫(xiě)出的解析式
(2)記,討論的單調(diào)性
(3)若時(shí),總有成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)對(duì)于定義域?yàn)镈的函數(shù),若同時(shí)滿(mǎn)足下列條件:①在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[],使在[]上的值域?yàn)閇];那么把()叫閉函數(shù)。(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是否為閉函數(shù)?并說(shuō)明理由;
(3)判斷函數(shù)是否為閉函數(shù)?若是閉函數(shù),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)f(x)為定義在R上的偶函數(shù),但x≥0時(shí),y= f(x)的圖像是頂點(diǎn)在P(3,4),且過(guò)點(diǎn)A(2,2)的拋物線的一部分。
(1)求函數(shù)f(x)在(-∞,0)上的解析式;
(2)求函數(shù)f(x)在R上的解析式,并畫(huà)出函數(shù)f(x)的圖像;
(3)寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知奇函數(shù)
(1)求實(shí)數(shù)m的值,并在給出的直角坐標(biāo)系中畫(huà)出的圖象;
(2)若函數(shù)在區(qū)間[-1,-2]上單調(diào)遞增,試確定的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題14分)已知函數(shù),(1)判斷此函數(shù)的奇偶性;(2)判斷函數(shù)的單調(diào)性,并加以證明.(3)解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題 滿(mǎn)分12分)已知是定義在上的偶函數(shù),且時(shí),.
(1)求,;
(2)求函數(shù)的表達(dá)式;
(3)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)已知函數(shù)
(1)試求的值域;
(2)設(shè),若對(duì)恒有 成立,試求實(shí)數(shù)的取值氛圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com