已知函數(shù)

(1)當時,如果函數(shù)g(x)=f(x)-k僅有一個零點,求實數(shù)k的取值范圍;

(2)當a=2時,試比較f(x)與1的大。

(3)求證:().

答案:
解析:

  解:(1)當時,,定義域是

  , 令,得  2分

  時,,當時,,

  函數(shù)、上單調(diào)遞增,在上單調(diào)遞減  4分

  的極大值是,極小值是

  時,;當時,,

  僅有一個零點時,的取值范圍是  5分

  (2)當時,,定義域為

  令,

  ,

  上是增函數(shù)  7分

 、佼時,,即;

 、诋時,,即;

 、郛時,,即  9分

  (3)(法一)根據(jù)(2)的結(jié)論,當時,,即

  令,則有,  12分

  ,

    14分

  (法二)當時,

  ,,即時命題成立  10分

  設(shè)當時,命題成立,即

  時,

  根據(jù)(2)的結(jié)論,當時,,即

  令,則有

  則有,即時命題也成立  13分

  因此,由數(shù)學(xué)歸納法可知不等式成立  14分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12高☆考♂資♀源*網(wǎng)分)

已知函數(shù)

(1) 當m=0時,求在區(qū)間上的取值范圍;

(2) 當時,,求m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省福州市八縣(市)協(xié)作校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)卷 題型:解答題

(本題14分)已知函數(shù),。

(1)當t=8時,求函數(shù)的單調(diào)區(qū)間;

(2)求證:當時,對任意正實數(shù)都成立;

(3)若存在正實數(shù),使得對任意的正實數(shù)都成立,請直接寫出滿足這樣條件的一個的值(不必給出求解過程)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(江西卷)解析版(理) 題型:解答題

 

已知函數(shù)

(1) 當m=0時,求在區(qū)間上的取值范圍; (2) 當時,,求m的值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)

(1)當=1,求函數(shù)單調(diào)遞增區(qū)間;

(2)當<0且∈[0,]時,函數(shù)的值域為[3,4],求+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),

(1)當=1時,曲線與直線=1交于點P,求曲線在點P處的切線方程;

(2)當<0,求函數(shù)單調(diào)遞增區(qū)間:

查看答案和解析>>

同步練習(xí)冊答案