已知.
(1)當(dāng)時,求的最大值;
(2)求證:恒成立;
(3)求證:.(參考數(shù)據(jù):)
(1)的最大值為0;(2)詳見解析;(3)詳見解析.
解析試題分析:(1)設(shè),求導(dǎo)利用單調(diào)性即可得其最大值;.
(2)由(1)得,,變形即得左邊的不等式:.右邊不等式顯然不宜直接作差,故考慮作適當(dāng)?shù)淖冃?為了證右邊,設(shè).求導(dǎo)得.的符號還不能直接確定.為了確定的符號,再設(shè),求導(dǎo)得,所以即由此可知即,從而原命題得證;(3)首先看看所證不等式與第(2)題有何聯(lián)系.對照待證不等式,可將(2)題中的不等式變形為:.顯然取,得.右邊易證如下:;左邊則應(yīng)考慮做縮小變形.由于左邊為,故將縮為一個等差數(shù)列.因為,所以考慮把縮小為.
當(dāng)時,,這樣累加,再用等差數(shù)列的求和公式即可使問題得證.
試題解析:(1)設(shè),則
,
所以在區(qū)間內(nèi)單調(diào)遞減,故的最大值為; (4分)
(2)由(1)得,對,都有,即,
因為,所以. (6分)
設(shè),則
.
設(shè),則,
所以在區(qū)間內(nèi)單調(diào)遞增,故即.
所以在區(qū)間內(nèi)單調(diào)遞增,故即,
因為,所以.
從而原命題得證. (9分)
(3)由(2)得,,
令,得.
所以; (11分)
另一方面,當(dāng)時,,
所以
從而命題得證. (14分)
考點:1、導(dǎo)數(shù)及其應(yīng)用;2、不等式的證明.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,半徑為30的圓形(為圓心)鐵皮上截取一塊矩形材料,其中點在圓弧上,點在兩半徑上,現(xiàn)將此矩形材料卷成一個以為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設(shè)與矩形材料的邊的夾角為,圓柱的體積為.
(1)求關(guān)于的函數(shù)關(guān)系式?
(2)求圓柱形罐子體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設(shè),木梁的體積為V(單位:m3),表面積為S(單位:m2).
(1)求V關(guān)于θ的函數(shù)表達式;
(2)求的值,使體積V最大;
(3)問當(dāng)木梁的體積V最大時,其表面積S是否也最大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若函數(shù)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(2)當(dāng)a=1時,求函數(shù)在區(qū)間[t,t+3]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在處取得極值,且在點處的切線斜率為.
⑴求的單調(diào)增區(qū)間;
⑵若關(guān)于的方程在區(qū)間上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),,.
(1)若,求的單調(diào)遞增區(qū)間;
(2)若曲線與軸相切于異于原點的一點,且的極小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的極值;
(2)設(shè)函數(shù)若函數(shù)在上恰有兩個不同零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(其中),,已知它們在處有相同的切線.
(1)求函數(shù),的解析式;
(2)求函數(shù)在上的最小值;
(3)若對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(1,g(1))處的切線方程為2y-1=0.
(1)求g(x)的解析式;
(2)設(shè)函數(shù)G(x)=若方程G(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com