(2013•天津)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩條漸近線與拋物線y2=2px(p>0)的準線分別交于A,B兩點,O為坐標原點.若雙曲線的離心率為2,△AOB的面積為
3
,則p=(  )
分析:求出雙曲線
x2
a2
-
y2
b2
=1
的漸近線方程與拋物線y2=2px(p>0)的準線方程,進而求出A,B兩點的坐標,再由雙曲線的離心率為2,△AOB的面積為
3
,列出方程,由此方程求出p的值.
解答:解:∵雙曲線
x2
a2
-
y2
b2
=1
,
∴雙曲線的漸近線方程是y=±
b
a
x
又拋物線y2=2px(p>0)的準線方程是x=-
p
2
,
故A,B兩點的縱坐標分別是y=±
pb
2a
,雙曲線的離心率為2,所以
c
a
=2
,則
b
a
=
3

A,B兩點的縱坐標分別是y=±
pb
2a
=±
3
p
2

又,△AOB的面積為
3
,x軸是角AOB的角平分線
1
2
×
3
p
2
=
3
,得p=2.
故選C.
點評:本題考查圓錐曲線的共同特征,解題的關(guān)鍵是求出雙曲線的漸近線方程,解出A,B兩點的坐標,列出三角形的面積與離心率的關(guān)系也是本題的解題關(guān)鍵,有一定的運算量,做題時要嚴謹,防運算出錯.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津)已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增.若實數(shù)a滿足f(log2a)+f(log
1
2
a)≤2f(1)
,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津)已知函數(shù)f(x)=x(1+a|x|).設(shè)關(guān)于x的不等式f(x+a)<f(x)的解集為A,若[-
1
2
1
2
]⊆A
,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津)已知過點P(2,2)的直線與圓(x-1)2+y2=5相切,且與直線ax-y+1=0垂直,則a=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津)已知下列三個命題:
①若一個球的半徑縮小到原來的
1
2
,則其體積縮小到原來的
1
8
;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標準差也相等;
③直線x+y+1=0與圓x2+y2=
1
2
相切.
其中真命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津)已知a,b∈R,i是虛數(shù)單位.若(a+i)(1+i)=bi,則a+bi=
1+2i
1+2i

查看答案和解析>>

同步練習(xí)冊答案