雙曲線的漸近線方程是(    )

A.     B.     C.     D.

 

【答案】

A

【解析】

試題分析:令,解得,即為雙曲線的漸近線方程.

考點:本小題主要考查雙曲線漸近線的求法.

點評:將雙曲線方程中的1換成0,解出的直線方程即為雙曲線的漸近線方程,這種求雙曲線漸近線的方法比利用簡單而且不容易出錯.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在x軸上的雙曲線的虛軸長等于半焦距,則雙曲線的漸近線方程是
y=±
3
x
y=±
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•萊蕪二模)已知雙曲線
x2
a2
-
y2
b2
=1
的實軸長為2,焦距為4,則該雙曲線的漸近線方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•棗莊二模)F1,F(xiàn)2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點,過點F2作此雙曲線一條漸近線的垂線,垂足為M,滿足|
MF1
|=
2
|
MF2
|
,則此雙曲線的漸近線方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點到一條漸近線的距離等于焦距的
1
4
,則該雙曲線的漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
25
+
y2
9
=1
的共同的左、右焦點,點P是兩曲線的一個交點,且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是
 

查看答案和解析>>

同步練習(xí)冊答案