已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x)。當x[0,1]時,f(x)=-x,若g(x)=f(x)-m(x+1)在區(qū)間(-1,2]有3個零點,則實數(shù)m的取值范圍是
A.(-,) | B.(-,] | C. | D. |
B
解析試題分析:根據(jù)題意,可求出f(x)區(qū)間(-1,2]上的分段函數(shù)的表達式,然后在同一坐標系內(nèi)作出y=f(x)和y=m(x+1)的圖象,觀察直線y=m(x+1)的斜率m變化,可得直線y=m(x+1)位于圖中AB、AC之間(包括AC)活動時,兩個圖象有三個公共點,由此求出直線AB、AC的斜率并與實數(shù)m加以比較,即可得到本題的答案.解:設(shè)得x+1∈[0,1],此時f(x+1)=-(x+1)=-x-,
∵函數(shù)f(x)滿足f(x+1)=-f(x)
∴當-1≤x≤0時,f(x)=x+.又∵f(x+2)=-f(x+1)═-[f(-x)]=f(x)∴f(x)是以2為周期的函數(shù),可得當1≤x≤2時,f(x)=f(x-2)=x-綜上所述,得f(x)區(qū)間(-1,2]上的表達式為f(x)=,
為了研究g(x)=f(x)-m(x+1)在區(qū)間(-1,2]上的零點,將其形為,f(x)=m(x+1),在同一坐標系內(nèi)作出y=f(x)和y=m(x+1)的圖象,如右圖所示,y=f(x)圖象是三條線段構(gòu)成的折線,y=m(x+1)的圖象是直線,因為直線y=m(x+1)經(jīng)過定點A(-1,0),所以由圖象可得當直線y=m(x+1),位于圖中AB、AC之間(包括AC)活動時,兩個圖象有三個公共點,相應地,g(x)=f(x)-m(x+1)在區(qū)間(-1,2]也有3個零點,∵B(1,-0.5),C(2,0.5),,∴kAB= 而直線y=m(x+1)的斜率為m,它在AB、AC之間(包括AC)活動時,m(,].因此,使得g(x)=f(x)-m(x+1)在區(qū)間(-1,2]有3個零點的m取值范圍為m(,],故選B
考點:分段函數(shù)圖象
點評:本題給出分段函數(shù)圖象與直線有三個公共點,求直線斜率m的取值范圍,著重考查了基本初等函數(shù)的圖象與性質(zhì)、直線的斜率及其變化等知識,屬于中檔題
科目:高中數(shù)學 來源: 題型:單選題
若,且,則函數(shù) ( )
A.且為奇函數(shù) | B.且為偶函數(shù) |
C.為增函數(shù)且為奇函數(shù) | D.為增函數(shù)且為偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
已知函數(shù)是定義域為的偶函數(shù),且,若在上是減函數(shù),那么在上是 ( )
A.增函數(shù) | B.減函數(shù) | C.先增后減的函數(shù) | D.先減后增的函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com