已知橢圓的焦點在軸上,一個頂點為,其右焦點到直線的距離為,則橢圓的方程為        

試題分析:據(jù)題意,橢圓方程是標準方程,,右焦點為,它到已知直線的距離為,,所以,橢圓方程為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓短軸的一個端點為,離心率為.
(1)求橢圓的標準方程;
(2)設直線交橢圓兩點,若.求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知離心率為的橢圓()過點 
(1)求橢圓的方程;
(2)過點作斜率為直線與橢圓相交于兩點,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

己知橢圓C:(a>b>0)的右焦點為F(1,0),點A(2,0)在橢圓C上,過F點的直線與橢圓C交于不同兩點.
(1)求橢圓C的方程;
(2)設直線斜率為1,求線段的長;
(3)設線段的垂直平分線交軸于點P(0,y0),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓:的左焦點為,且過點.

(1)求橢圓的方程;
(2)設過點P(-2,0)的直線與橢圓E交于A、B兩點,且滿足.
①若,求的值;
②若M、N分別為橢圓E的左、右頂點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

P為橢圓=1上的一點,F1,F2分別是該橢圓的左、右焦點,若|PF1|∶|PF2|=2∶1,則△PF1F2的面積為(  ).
A.2B.3 C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則方程表示(   )
A.焦點在軸上的橢圓B.焦點在軸上的橢圓
C.焦點在軸上的雙曲線D.焦點在軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的準線與雙曲線 交于,兩點,點為拋物線的焦點,若△為直角三角形,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知AB為半圓的直徑,P為半圓上一點,以A、B為焦點且過點P做橢圓,當點P在半圓上移動時,橢圓的離心率有(  )
A.最大值         B.最小值        C.最大值       D.最小值

查看答案和解析>>

同步練習冊答案