【題目】現(xiàn)對某市工薪階層關于“樓市限購令”的態(tài)度進行調查,隨機抽調了人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.

月收入(單位百元)

頻數(shù)

贊成人數(shù)

1)由以上統(tǒng)計數(shù)據填下面列聯(lián)表,并問是否有的把握認為“月收入以元為分界點對“樓市限購令”的態(tài)度有差異;

月收入不低于百元的人數(shù)

月收入低于百元的人數(shù)

合計

贊成

______________

______________

______________

不贊成

______________

______________

______________

合計

______________

______________

______________

2)若對在的被調查者中各隨機選取兩人進行追蹤調查,記選中的人中不贊成“樓市限購令”的人數(shù)為,求隨機變量的分布列及數(shù)學期望.

參考公式:,其中.

參考值表:

【答案】1)列聯(lián)表見解析,沒有的把握認為月收入以元為分界點對“樓市限購令”的態(tài)度有差異 ;(2,分布列見解析.

【解析】

1)根據題干表格中的數(shù)據補充列聯(lián)表,并計算出的觀測值,將觀測值與作大小比較,于此可對題中結論進行判斷;

2)由題意得出隨機變量的可能取值有、、,然后利用超幾何分布概率公式計算出隨機變量在相應取值時的概率,可得出隨機變量的分布列,并計算出該隨機變量的數(shù)學期望.

1列聯(lián)表:

月收入不低于百元的人數(shù)

月收入低于百元的人數(shù)

合計

贊成

______________

______________

_________

不贊成

______________

______________

___________

合計

____________

______________

_________

則沒有的把握認為月收入以元為分界點對“樓市限購令”的態(tài)度有差異;

2的所有可能取值有:、、.

,

,

.

的分布列如下表:

的期望值是:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以下給出了4個命題:

1)兩個長度相等的向量一定相等;

2)相等的向量起點必相同;

3)若,且,則;

4)若向量的模小于的模,則

其中正確命題的個數(shù)共有(

A.3 B.2 C.1 D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為F,過點F作垂直于x軸的直線與拋物線交于A,B兩點,且以線段AB為直徑的圓過點.

(1)求拋物線C的方程;

(2)設過點的直線分別與拋物線C交于點D,E和點G,H,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)當時,求證:;

(2)若有三個零點時,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓經過點,左、右焦點分別是,點在橢圓上,且滿足點只有兩個.

(Ⅰ)求橢圓的方程;

(Ⅱ)過且不垂直于坐標軸的直線交橢圓兩點,在軸上是否存在一點,使得的角平分線是軸?若存在求出,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形所在的平面與直角梯形所在的平面成的二面角,,,,,,.

1)求證:;

2)在線段上求一點,使銳二面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某學校的特長班有50名學生,其中有體育生20名,藝術生30名,在學校組織的一次體檢中,該班所有學生進行了心率測試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據分成五組,第一組[50,55),第二組[55,60),…,第五組[70,75],按上述分組方法得到的頻率分布直方圖如圖所示.因為學習專業(yè)的原因,體育生常年進行系統(tǒng)的身體鍛煉,藝術生則很少進行系統(tǒng)的身體鍛煉,若前兩組的學生中體育生有8名.

(1)根據頻率分布直方圖及題設數(shù)據完成下列2×2列聯(lián)表.

心率小于60次/分

心率不小于60次/分

合計

體育生

20

藝術生

30

合計50

(2)根據(1)中表格數(shù)據計算可知,________(填“有”或“沒有”)99.5%的把握認為“心率小于60次/分與常年進行系統(tǒng)的身體鍛煉有關”.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,經過伸縮變換后,曲線C的方程變?yōu)?/span>.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線/的極坐標方程為.

1)求曲線C和直線l的直角坐標方程;

2)過點l的垂線l0CA,B兩點,點Ax軸上方,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調遞增區(qū)間.

查看答案和解析>>

同步練習冊答案