【題目】已知某幾何體的三視圖如圖2所示(小正方形的邊長(zhǎng)為),則該幾何體的外接球的表面積為( )

A. B. C. D.

【答案】A

【解析】分析:首先根據(jù)題中所給的三視圖,還原幾何體,得到該幾何體是由正方體切割而成的,找到該幾何體的頂點(diǎn)有三個(gè)是正方體的棱的中點(diǎn),一個(gè)就是正方體的頂點(diǎn),之后將幾何體補(bǔ)體,從而得到該三棱錐的外接球是補(bǔ)成的棱柱的外接球,利用公式求得結(jié)果.

詳解根據(jù)題中所給的三視圖,可以將幾何體還原,可以得到該幾何體是由正方體切割而成的,記正方體是,

則記的中點(diǎn)為E,CD中點(diǎn)為F,中點(diǎn)為G,

題中所涉及的幾何體就是三棱錐,

經(jīng)過(guò)分析,將幾何體補(bǔ)體,

取棱中點(diǎn)H,再取正方體的頂點(diǎn),

從而得到該三棱錐的外接球即為直三棱柱的外接球,

利用正弦定理可以求得底面三角形的外接圓的半徑為,

棱柱的高為4,所以可以求得其外接球的半徑,

所以其表面積為故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,均是邊長(zhǎng)為2的等邊三角形,點(diǎn)中點(diǎn),平面平面.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個(gè)截面,若截面為平行四邊形.

(1)求證:AB∥平面EFGH

(2)AB4CD6,求四邊形EFGH周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過(guò)樣本點(diǎn)的中心(

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,,,且,EPD中點(diǎn).

I)求證:平面ABCD;

II)求二面角B-AE-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的左、右焦點(diǎn)分別為、,、分別是雙曲線左、右兩支上關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的兩點(diǎn),且直線的斜率為.、分別為的中點(diǎn),若原點(diǎn)在以線段為直徑的圓上,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)當(dāng)時(shí),若函數(shù)處的切線與函數(shù)相切,求實(shí)數(shù)的值;

(2)當(dāng)時(shí),記.證明:當(dāng)時(shí),存在,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知四邊形BCDE為直角梯形,,,且,ABE的中點(diǎn)沿AD折到位置如圖,連結(jié)PCPB構(gòu)成一個(gè)四棱錐

求證;

平面ABCD

求二面角的大小;

在棱PC上存在點(diǎn)M,滿足,使得直線AM與平面PBC所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出定義:若(其中為整數(shù)),則叫做離實(shí)數(shù)最近的整數(shù),記作,即.設(shè)函數(shù),二次函數(shù),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),則的取值不可能是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案