(本小題12分) 已知為實數(shù),,
(1)若,求的單調(diào)區(qū)間;
(2)若,求在[-2,2] 上的最大值和最小值。
(1)的遞增區(qū)間為遞減區(qū)間為
(2) f(x)在[-2,2]上的最大值為最小值為

試題分析:(1)當(dāng)時,

,得
,得
所以的遞增區(qū)間為,遞減區(qū)間為(6分)
(2) ∴
 得,所以
,令或x="-1"
列表格,或者討論單調(diào)性,求出極值。再比較端點(diǎn)值。

所以f(x)在[-2,2]上的最大值為最小值為      (12分)
點(diǎn)評:考查了導(dǎo)數(shù)在解決函數(shù)單調(diào)性和極值的運(yùn)用,同時能結(jié)合函數(shù)的極值得到最值,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對任意的,則(  )
A.B.
C.D.的大小不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形紙板ABCD的頂點(diǎn)A、B分別在正方形邊框EOFG的邊OE、OF上,當(dāng)點(diǎn)BOF邊上進(jìn)行左右運(yùn)動時,點(diǎn)A隨之在OE上進(jìn)行上下運(yùn)動.若AB=8,BC=3,運(yùn)動過程中,則點(diǎn)D到點(diǎn)O距離的最大值為
A.B.9C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),。
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若的圖象恰有兩個交點(diǎn),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)在R上是增函數(shù),且,則的取值范圍是(  )
A.(-B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求實數(shù)的值.
(2)若,求的最小值;
(3)在(Ⅱ)上求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
①當(dāng)時,求曲線在點(diǎn)處的切線方程。
②求的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試分別解答以下兩小題.
(。┤舨坏仁對任意的恒成立,求實數(shù)的取值范圍;
(ⅱ)若是兩個不相等的正數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)(    )
A.是偶函數(shù),且在上是減函數(shù)B.是偶函數(shù),且在上是增函數(shù)
C.是奇函數(shù),且在上是減函數(shù)D.是奇函數(shù),且在上是增函數(shù)

查看答案和解析>>

同步練習(xí)冊答案