【題目】三棱錐P﹣ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且這四個(gè)頂點(diǎn)都在半徑為2的球面上,PA=2PB,則這個(gè)三棱錐的三個(gè)側(cè)棱長(zhǎng)的和的最大值為( 。
A.16
B.
C.
D.32

【答案】B
【解析】解:∵PA,PB,PC兩兩垂直,
又∵三棱錐P﹣ABC的四個(gè)頂點(diǎn)均在半徑為2的球面上,
∴以PA,PB,PC為棱的長(zhǎng)方體的對(duì)角線即為球的一條直徑.
∴16=PA2+PB2+PC2 , 又PA=2PB,∴5PB2+PC2=16,
設(shè)PB=,PC=4sinα,
則這個(gè)三棱錐的三個(gè)側(cè)棱長(zhǎng)的和PA+PB+PC=3PB+PC=cosα+4sinα=sin(α+)≤
則這個(gè)三棱錐的三個(gè)側(cè)棱長(zhǎng)的和的最大值為
故選B.
【考點(diǎn)精析】本題主要考查了棱臺(tái)的結(jié)構(gòu)特征和球內(nèi)接多面體的相關(guān)知識(shí)點(diǎn),需要掌握①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn);球的內(nèi)接正方體的對(duì)角線等于球直徑;長(zhǎng)方體的外接球的直徑是長(zhǎng)方體的體對(duì)角線長(zhǎng)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組中的函數(shù)f(x)與g(x),是同一函數(shù)的是(
A.f(x)=ln(1﹣x)+ln(1+x),g(x)=ln(1﹣x2
B.f(x)=lgx2 , g(x)=2lgx
C.f(x)= ? ,g(x)=
D.f(x)= ,g(x)=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是(
A.
B.y=ex
C.y=lg|x|
D.y=﹣x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足csinA=acosC
(1)求角C大小;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時(shí)角A,B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明跟父母、爺爺奶奶一同參加《中國(guó)詩(shī)詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,E為AB中點(diǎn),F(xiàn)為正方形BCC1B1的中心.
(1)求直線EF與平面ABCD所成角的正切值;
(2)求異面直線A1C與EF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.[﹣ , ]
B.(﹣ ,
C.(﹣∞,﹣)∪( , +∞)
D.(﹣∞,﹣)∩( , +∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題甲:關(guān)于x的不等式x2+(a﹣1)x+a2≤0的解集為空集;命題乙:方程x2+ ax﹣(a﹣4)=0有兩個(gè)不相等的實(shí)根.
(1)若甲,乙都是真命題,求實(shí)數(shù)a的取值范圍;
(2)若甲,乙中有且只有一個(gè)是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 的定義域?yàn)榧螦,集合B={x||x+2|+|x﹣2|>8}.
(1)求集合A,B;
(2)求B∩A.

查看答案和解析>>

同步練習(xí)冊(cè)答案