【題目】已知拋物線的焦點恰好是橢圓的右焦點.

1)求實數(shù)的值及拋物線的準線方程;

2)過點任作兩條互相垂直的直線分別交拋物線、點,求兩條弦的弦長之和的最小值.

【答案】(1);(2)最小值為

【解析】

1)根據(jù)橢圓方程C:求出右焦點,即為拋物線的焦點,根據(jù)拋物線的焦點坐標與的關系式即可求出,最后得拋物線的準線方程.

2)根據(jù)題意設 的直線方程,將直線代入拋物線中,,根據(jù)韋達韋達定理求得,同理求得,+用基本不等式不等式即可求出最小值.

1)由已知橢圓C整理得,

所以焦點F的坐標為, 所以

所以拋物線E的準線方程為:

2)由題意知兩條直線的斜率存在且不為零

設直線的斜率為,方程為,

的斜率為,方程為

、,

因為,所以,,

所以同理得,

所以

當且僅當時取等號”,所以兩條弦的弦長之和的最小值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.

(1)求直線與平面所成角的正弦值;

(2)若點M,N分別在AB,PC上,且平面,試確定點M,N的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合 為集合Un個非空子集,這n個集合滿足:①從中任取m個集合都有 成立;②從中任取個集合都有 成立.

Ⅰ)若, ,寫出滿足題意的一組集合

Ⅱ)若,寫出滿足題意的一組集合以及集合;

) , ,求集合中的元素個數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Cx2+y2+2x2y+10和拋物線Ey22pxp0),圓C與拋物線E的準線交于M、N兩點,MNF的面積為p,其中FE的焦點.

1)求拋物線E的方程;

2)不過原點O的動直線l交該拋物線于A,B兩點,且滿足OAOB,設點Q為圓C上任意一動點,求當動點Q到直線l的距離最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“工資條里顯紅利,個稅新政人民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.201911日實施的個稅新政主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括住房、子女教育和贍養(yǎng)老人等.

新舊個稅政策下每月應納稅所得額(含稅)計算方法及其對應的稅率表如下:

舊個稅稅率表(個稅起征點3500)

新個稅稅率表(個稅起征點5000)

繳稅級數(shù)

每月應納稅所得額(含稅)=收入-個稅起征點

稅率(%)

每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除

稅率(%)

1

不超過1500元部分

3

不超過3000元部分

3

2

超過1500元至4500元部分

10

超過3000元至12000元部分

10

3

超過4500元至9000元的部分

20

超過12000元至25000元的部分

20

4

超過9000元至35000元的部分

25

超過25000元至35000元的部分

25

5

超過35000元至55000元部分

30

超過35000元至55000元部分

30

···

···

···

···

···

隨機抽取某市1000名同一收入層級的從業(yè)者的相關資料,經(jīng)統(tǒng)計分析,預估他們2019年的人均月收入24000.統(tǒng)計資料還表明,他們均符合住房專項扣除;同時,他們每人至多只有一個符合子女教育扣除的孩子,并且他們之中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合贍養(yǎng)老人扣除的人數(shù)之比是2:1:1:1;此外,他們均不符合其他專項附加扣除.新個稅政策下該市的專項附加扣除標準為:住房1000/,子女教育每孩1000/,贍養(yǎng)老人2000/月等。

假設該市該收入層級的從業(yè)者都獨自享受專項附加扣除,將預估的該市該收入層級的從業(yè)者的人均月收入視為其個人月收入.根據(jù)樣本估計總體的思想,解決如下問題:

1)設該市該收入層級的從業(yè)者2019年月繳個稅為,的分布列和期望;

2)根據(jù)新舊個稅方案,估計從20191月開始,經(jīng)過多少個月,該市該收入層級的從業(yè)者各月少繳交的個稅之和就超過2019年的月收入?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線C的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為

(1)求曲線C的參數(shù)方程和直線的直角坐標方程;

(2)若直線軸和y軸分別交于AB兩點,P為曲線C上的動點,求PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,過F點的直線交拋物線于不同的兩點A、B,且,點A關于軸的對稱點為,線段的中垂線交軸于點D,則D點的坐標為

A. (2,0)B. (30)C. (4,0)D. (50)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校隨機抽取部分男生測試立定跳遠,將成績整理得到頻率分布表如表,測試成績在220厘米以上(含220厘米)的男生定為合格生,成績在260厘米以上(含260厘米)的男生定為優(yōu)良生

分組(厘米)

頻數(shù)

頻率

[180,200

0.10

[200,220

15

[220,240

0.30

[240,260

0.30

[260,280

0.20

合計

1.00

1)求參加測試的男生中合格生的人數(shù).

2)從參加測試的合格生中,根據(jù)表中分組情況,按分層抽樣的方法抽取8名男生,再從這8名男生中抽取3名男生,記X表示3人中優(yōu)良生的人數(shù),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前n項和滿足

1)求數(shù)列的通項公式;

2)若nN*),求數(shù)列的前n項和;

3)是否存在實數(shù)使得恒成立,若存在,求實數(shù)的取值范圍,若不存在說明理由.

查看答案和解析>>

同步練習冊答案