【題目】如圖,在以為頂點(diǎn)的五面體中,O為AB的中點(diǎn),
平面, ∥, , , .
(1)在圖中過點(diǎn)O作平面,使得∥平面,并說明理由;
(2)求直線DE與平面CBE所成角的正切值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)在BE上取點(diǎn)F,使得,在BC上取點(diǎn)H,使,平面OFH即為所求的平面取BE的中點(diǎn)G,連接AG,再證明∥平面即可;(2)先證明是與平面所成的角,根據(jù)與平面所成的角等于與平面所成的角,利用直角三角形性質(zhì)可得結(jié)果.
試題解析:(1)如圖,在BE上取點(diǎn)F,使得,在BC上取點(diǎn)H,使,連接OF,F(xiàn)H,OH,則平面OFH即為所求的平面.
理由如下:
取BE的中點(diǎn)G,連接AG,
, 為中點(diǎn),
∥ ∥, 是平行四邊形,
∥
中, 是中點(diǎn), 是中點(diǎn),
所以是中位線,∥ ∥,
平面, 平面,
∥平面.
又中, , ,
, 平面, 平面,
平面,
又, 平面, 平面,
平面平面,即∥平面.
(2)連接,因?yàn)?/span>平面,
又∥ ,所以平面,
又 平面
是與平面所成的角,
∥,
與平面所成的角等于與平面所成的角
在中, , ,
在中,
在中,
即直線DE與平面CBE所成角的正切值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的方程為.
(Ⅰ)寫出直線的普通方程和圓的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)的直角坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空間中任意放置的棱長(zhǎng)為2的正四面體.下列命題正確的是_________.(寫出所有正確的命題的編號(hào))
①正四面體的主視圖面積可能是;
②正四面體的主視圖面積可能是;
③正四面體的主視圖面積可能是;
④正四面體的主視圖面積可能是2
⑤正四面體的主視圖面積可能是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩類型號(hào),某月的產(chǎn)量如下表:(單位:輛). 按類用分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.
(1)求的值;
(2)用分層抽樣的方法在類轎車中抽取一個(gè)容量為5的樣本,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機(jī)抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測(cè)它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車的得分看成一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點(diǎn).
(1)求證:AP∥平面MBD;
(2)若AD⊥PB,求證:BD⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),對(duì)于函數(shù),稱向量為函數(shù)的伴隨向量,同時(shí)稱函數(shù)為向量的伴隨函數(shù).
(Ⅰ)設(shè)函數(shù),試求的伴隨向量;
(Ⅱ)記向量的伴隨函數(shù)為,求當(dāng)且時(shí)的值;
(Ⅲ)由(Ⅰ)中函數(shù)的圖像(縱坐標(biāo)不變)橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍,再把整個(gè)圖像向右平移個(gè)單位長(zhǎng)度得到的圖像。已知 ,問在的圖像上是否存在一點(diǎn),使得.若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且直線是函數(shù)的一條切線.
(1)求的值;
(2)對(duì)任意的,都存在,使得,求的取值范圍;
(3)已知方程有兩個(gè)根,若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(I)求直方圖中的a值;
(II)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com