如圖,弧為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過(guò)Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(2)過(guò)D點(diǎn)的直線l與曲線C相交于不同的兩點(diǎn)M、N,且M在D、N之間,設(shè)=λ,求λ的取值范圍
解 (1)以AB、OD所在直線分別為x軸、y軸,O為原點(diǎn),建立平面直角坐標(biāo)系, ∵|PA|+|PB|=|QA|+|QB|=2>|AB|=4
∴曲線C為以原點(diǎn)為中心,A、B為焦點(diǎn)的橢圓
設(shè)其長(zhǎng)半軸為a,短半軸為b,半焦距為c,則2a=2,∴a=,c=2,b=1
∴曲線C的方程為+y2=1
(2)設(shè)直線l的方程為y=kx+2,代入+y2=1,得(1+5k2)x2+20kx+15=0
Δ=(20k)2-4×15(1+5k2)>0,得k2> 由圖可知=λ
由韋達(dá)定理得
將x1=λx2代入得
,兩式相除得
①
M在D、N中間,∴λ<1 ②
又∵當(dāng)k不存在時(shí),顯然λ= (此時(shí)直線l與y軸重合)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
3π |
4 |
CD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
3π |
4 |
CD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
4 |
π |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,弧為半圓,AB為半圓直徑,O為半圓圓心,且,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過(guò)Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變。
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(Ⅱ)過(guò)點(diǎn)B的直線與曲線C交于M、N兩點(diǎn),與OD所在直線交于E點(diǎn),若為定值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com