將函數(shù)的圖形向右平移個單位后得到的圖像,已知的部分圖像如圖所示,該圖像與y軸相交于點(diǎn),與x軸相交于點(diǎn)P、Q,點(diǎn)M為最高點(diǎn),且的面積為.
(1)求函數(shù)的解析式;
(2)在中,分別是角A,B,C的對邊,,且,求面積的最大值.
(1);(2).
解析試題分析:本題主要考查三角函數(shù)圖象、三角函數(shù)圖象的平移變換、余弦定理、三角函數(shù)面積、基本不等式等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、計(jì)算能力.第一問,先將的圖象向右平移個單位得到的解析式,由解析式得最大值M=2,利用三角形面積公式可得到,而周期,利用周期的計(jì)算公式得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2c/a/qey1y.png" style="vertical-align:middle;" />過,代入解析式得到的值,從而得到的解析式;第二問,先利用,利用特殊角的三角函數(shù)值得到角A的大小,再利用余弦定理得到b和c的一個關(guān)系式,利用基本不等式得到,代入到三角形面積公式中,得到面積的最大值.
(1)由題意可知
由于,則,∴,即 2分
又由于,且,則,∴ 5分
即. 6分
(2),則,∴ 8分
由余弦定理得,∴ 10分
∴,當(dāng)且僅當(dāng)時,等號成立,故的最大值為. 12分
考點(diǎn):三角函數(shù)圖象、三角函數(shù)圖象的平移變換、余弦定理、三角函數(shù)面積、基本不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)直線是圖像的任意兩條對稱軸,且的最小值為.
求函數(shù)的單調(diào)增區(qū)間;
(2)求使不等式的的取值范圍.
(3)若求的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)A=1時,求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)A>0,且x∈[0,π]時,f(x)的值域是[3,4],求A,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的部分圖象如圖所示.
(1)求函數(shù)的解析式,并寫出 的單調(diào)減區(qū)間;
(2)已知的內(nèi)角分別是A,B,C,角A為銳角,且的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,函數(shù)的最小正周期為.
(1)求的值;
(2)設(shè)的三邊、、滿足:,且邊所對的角為,若關(guān)于的方程有兩個不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com