【題目】選修4-4 坐標系與參數(shù)方程選講
在直角坐標系中,直線的參數(shù)方程(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線極坐標方程為.
(1)求直線的普通方程以及曲線的參數(shù)方程;
(2)當時,為曲線上動點,求點到直線距離的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】2012年12月18日,作為全國首批開展空氣質(zhì)量新標準監(jiān)測的74個城市之一,鄭州市正式發(fā)布數(shù)據(jù).資料表明,近幾年來,鄭州市霧霾治理取得了很大成效,空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設有9個監(jiān)測站點監(jiān)測空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設有2,5,2個監(jiān)測站點,以9個站點測得的的平均值為依據(jù),播報我市的空氣質(zhì)量.
(Ⅰ)若某日播報的為118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值;
(Ⅱ)如圖是2018年11月的30天中的分布,11月份僅有一天在內(nèi).
組數(shù) | 分組 | 天數(shù) |
第一組 | 3 | |
第二組 | 4 | |
第三組 | 4 | |
第四組 | 6 | |
第五組 | 5 | |
第六組 | 4 | |
第七組 | 3 | |
第八組 | 1 |
①鄭州市某中學利用每周日的時間進行社會實踐活動,以公布的為標準,如果小于180,則去進行社會實踐活動.以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校周日進行社會實踐活動的概率;
②在“創(chuàng)建文明城市”活動中,驗收小組把鄭州市的空氣質(zhì)量作為一個評價指標,從當月的空氣質(zhì)量監(jiān)測數(shù)據(jù)中抽取3天的數(shù)據(jù)進行評價,設抽取到不小于180的天數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位為了響應疫情期間有序復工復產(chǎn)的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在“員工甲不是第一個檢測,員工乙不是最后一個檢測”的條件下,員工丙第一個檢測的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正方體的棱長為2,,,,分別是,,,的中點,則過且與平行的平面截正方體所得截面的面積為____,和該截面所成角的正弦值為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P-ABCD,底面ABCD是,邊長為的菱形,又底面(即與底面內(nèi)的任意一條直線垂直),且,點分別是棱的中點.
(1)求異面直線與所成角的余弦值
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】盒子內(nèi)有3個不同的黑球,5個不同的白球.
(1)從中取出3個黑球、4個白球排成一列且4個白球兩兩不相鄰的排法有多少種?
(2)從中任取6個球且白球的個數(shù)不比黑球個數(shù)少的取法有多少種?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設命題p:實數(shù)x滿足x2﹣4ax+3a2<0(a>0),命題q:實數(shù)x滿足x2﹣5x+6<0.
(1)若a=1,且p∧q為真命題,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,將四棱錐S-ABCD的每一個頂點染上一種顏色,并使同一條棱上的兩端異色,如果只有5種色可供使用,則不同的染色方法種數(shù)為( )
A.240B.360C.420D.960
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com