如圖,☉O和☉O′相交于A,B兩點,過A作兩圓的切線分別交兩圓于C、D兩點,連結DB并延長交☉O于點E.證明:

(1)AC·BD=AD·AB;
(2)AC=AE.

見解析

解析證明:(1)由AC與☉O′相切于A,得∠CAB=∠ADB,
同理∠ACB=∠DAB,
所以△ACB∽△DAB,從而=,
即AC·BD=AD·AB.
(2)由AD與☉O相切于A,得∠AED=∠BAD,
又∠ADE=∠BDA,得△EAD∽△ABD.
從而=,
即AE·BD=AD·AB,
結合(1)的結論,AC=AE.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖:是⊙的直徑,是弧的中點,,垂足為于點.

(1)求證:=;
(2)若=4,⊙的半徑為6,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知相交于A、B兩點,過A點作切線交于點E,連接EB并延長交于點C,直線CA交于點D,

(1)當點D與點A不重合時(如圖1),證明:ED2=EB·EC;
(2)當點D與點A重合時(如圖2),若BC=2,BE=6,求的直徑長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,圓的圓心的直角邊上,該圓與直角邊相切,與斜邊交于,.

(1)求的長;
(2)求圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,∠ACB的平分線CD交AE于點F,交AB于點D.

(1)求∠ADF的度數(shù);
(2)若AB=AC,求AC∶BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點EDB垂直BE交圓于點D.
 
(1)證明:DBDC
(2)設圓的半徑為1,BC,延長CEAB于點F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是⊙O的直徑,BC是⊙O的切線,B為切點,OC平行于弦AD,連結CD.
 
(1)求證:CD是⊙O的切線;
(2)過點DDEAB于點E,交AC于點P,求證:P點平分線段DE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是⊙的直徑, 是⊙的切線,的延長線交于點,為切點.若,的平分線和⊙分別交于點、,求的值.
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,點A,B,C是圓O上的點,且AB=4,∠ACB=45°,求圓O的面積.

查看答案和解析>>

同步練習冊答案