如圖,正四棱柱中,,點(diǎn)在上.
(1)證明:平面;(2)求二面角的大。
解法一: ,
依題設(shè)知,.
(Ⅰ)連結(jié)交于點(diǎn),則.
由三垂線定理知,. 3分
在平面內(nèi),連結(jié)交于點(diǎn),
由于,
故,,
與互余.
于是.
與平面內(nèi)兩條相交直線都垂直,
所以平面. 6分
(Ⅱ)作,垂足為,連結(jié).由三垂線定理知,
故是二面角的平面角. 8分
,
,.
,.
又,.
.
所以二面角的大小為. 12分
解法二:
以為坐標(biāo)原點(diǎn),射線為軸的正半軸,
建立如圖所示直角坐標(biāo)系.
依題設(shè),.
,
. 3分
(Ⅰ)因?yàn)?img width=81 height=27 src="http://thumb.zyjl.cn/pic1/1899/sx/160/254760.gif">,,
故,.
又,
所以平面. 6分
(Ⅱ)設(shè)向量是平面的法向量,則
,.
故,.
令,則,,. 9分
等于二面角的平面角,
.
所以二面角的大小為.
同答案
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市高三上學(xué)期第一次月考理科數(shù)學(xué) 題型:解答題
如圖,正四棱柱中,,點(diǎn)在上且
(1)證明:平面;(2)求二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省六校高三第一次聯(lián)考理科數(shù)學(xué) 題型:解答題
如圖,正四棱柱中,,點(diǎn)在上且
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題
如圖,正四棱柱中,設(shè),,
若棱上存在點(diǎn)滿足平面,求實(shí)數(shù)的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com