【題目】已知函數(shù)圖象的一條切線為.

(1)設(shè)函數(shù),討論的單調(diào)性;

(2)若函數(shù)的圖象恒與x軸有兩個(gè)不同的交點(diǎn)M(,0),N(,0),求證:.

【答案】(1)見解析;(2)見解析

【解析】分析:(1)先根據(jù)導(dǎo)數(shù)幾何意義得切點(diǎn)坐標(biāo),代入函數(shù)解析式得,再求的導(dǎo)數(shù),根據(jù)b討論導(dǎo)函數(shù)零點(diǎn),進(jìn)而得單調(diào)性,(2)先求導(dǎo)數(shù),轉(zhuǎn)化+>2,再構(gòu)造函數(shù),x(1,2),利用導(dǎo)數(shù)易得(x)(1,2)上單調(diào)遞增,即得()>(1)=0,即()>(2),最后根據(jù)()=(),證得結(jié)論成立.

詳解:(1),設(shè)切點(diǎn),則切線斜率

,即切點(diǎn),故,

①當(dāng)時(shí),,∴增區(qū)間,無減區(qū)間;

②當(dāng)時(shí),令,得;令,得

增區(qū)間,減區(qū)間

(2)依題意及(1)得函數(shù),則,

∴當(dāng)0<x<1時(shí),;當(dāng)x>1時(shí),,

∴函數(shù)在區(qū)間(0,1)上單調(diào)遞增在區(qū)間(1,+∞)上單調(diào)遞減,

∵函數(shù)的圖象恒與x軸有兩個(gè)不同的交點(diǎn)M(,0),N(,0),

且當(dāng)x趨近于0時(shí),趨近于,當(dāng)x趨近于+∞時(shí),趨近于∞,

1m>0,m<1,且,

故不妨設(shè)<,則0<<1<

要證()<0,需證>1,即+>2,

當(dāng)≥2時(shí),顯然成立.

當(dāng)1<<2時(shí),令x(1,2),

,(x)=ln xln(2x)2x+2,

=+2=>0,x(1,2),

(x)(1,2)上單調(diào)遞增,∴()>(1)=0,即()>(2),

又由題意知()=(),()>(2).

(0,1)上單調(diào)遞增,(0,1),2(0,1),

>2,即+>2.綜上可得,+>2,即證

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張卡片分別寫有數(shù)字,從中任取張,可排出不同的四位數(shù)個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運(yùn)動(dòng)”是由騰訊開發(fā)的一個(gè)類似計(jì)步數(shù)據(jù)庫的公眾賬號(hào).用戶可以通過關(guān)注“微信運(yùn)動(dòng)”公眾號(hào)查看自己及好友每日行走的步數(shù)、排行榜,也可以與其他用戶進(jìn)行運(yùn)動(dòng)量的或點(diǎn)贊.現(xiàn)從某用戶的“微信運(yùn)動(dòng)”朋友圈中隨機(jī)選取40人,記錄他們某一天的行走步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)/步

0~2000

2001~5000

5001~8000

8001~10000

10000以上

男性人數(shù)/人

1

6

9

5

4

女性人數(shù)/人

0

3

6

4

2

規(guī)定:用戶一天行走的步數(shù)超過8000步時(shí)為“運(yùn)動(dòng)型”,否則為“懈怠型”.

(1)將這40人中“運(yùn)動(dòng)型”用戶的頻率看作隨機(jī)抽取1人為“運(yùn)動(dòng)型”用戶的概率.從該用戶的“微信運(yùn)動(dòng)”朋友圈中隨機(jī)抽取4人,記為“運(yùn)動(dòng)型”用戶的人數(shù),求的數(shù)學(xué)期望;

(2)現(xiàn)從這40人中選定8人(男性5人,女性3人),其中男性中“運(yùn)動(dòng)型”有3人,“懈怠型”有2人,女性中“運(yùn)動(dòng)型”有2人,“懈怠型”有1人.從這8人中任意選取男性3人、女性2人,記選到“運(yùn)動(dòng)型”的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校選派甲、乙、丙、丁、戊5名學(xué)生代表學(xué)校參加市級(jí)“演講”和“詩詞”比賽,下面是他們的一段對(duì)話甲說:“乙參加‘演講’比賽”;乙說:“丙參加‘詩詞’比賽”;丙說“丁參加‘演講’比賽”丁說:“戊參加‘詩詞’比賽”;戊說:“丁參加‘詩詞’比賽”

已知這5個(gè)人中有2人參加演講比賽3人參加詩詞比賽,其中有2人說的不正確且參加“演講”的2人中只有1人說的不正確.根據(jù)以上信息,可以確定參加“演講”比賽的學(xué)生是

A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fn(x)=xn+bx+c(n∈N+ , b,c∈R)
(1)設(shè)n≥2,b=1,c=﹣1,證明:fn(x)在區(qū)間 內(nèi)存在唯一的零點(diǎn);
(2)設(shè)n=2,若對(duì)任意x1 , x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,求b的取值范圍;
(3)在(1)的條件下,設(shè)xn是fn(x)在 內(nèi)的零點(diǎn),判斷數(shù)列x2 , x3 , …,xn 的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,g(x)=ax2+bx(a,b∈R,a≠0)若y=f(x)的圖象與y=g(x)圖象有且僅有兩個(gè)不同的公共點(diǎn)A(x1 , y1),B(x2 , y2),則下列判斷正確的是(
A.當(dāng)a<0時(shí),x1+x2<0,y1+y2>0
B.當(dāng)a<0時(shí),x1+x2>0,y1+y2<0
C.當(dāng)a>0時(shí),x1+x2<0,y1+y2<0
D.當(dāng)a>0時(shí),x1+x2>0,y1+y2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高鐵、網(wǎng)購、移動(dòng)支付和共享單車被譽(yù)為中國的新四大發(fā)明,彰顯出中國式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周移動(dòng)支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合計(jì)

15

12

13

7

8

45

(Ⅰ)把每周使用移動(dòng)支付超過3次的用戶稱為“移動(dòng)支付活躍用戶”,由以上數(shù)據(jù)完成下列列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.005的前提下,認(rèn)為“移動(dòng)支付活躍用戶”與性別有關(guān)?

移動(dòng)支付活躍用戶

非移動(dòng)支付活躍用戶

總計(jì)

總計(jì)

100

(Ⅱ)把每周使用移動(dòng)支付6次及6次以上的用戶稱為移動(dòng)支付達(dá)人”.為了做好調(diào)查工作,決定用分層抽樣的方法從“移動(dòng)支付達(dá)人”中抽取6人進(jìn)行問卷調(diào)查,再從這6人中選派2人參加活動(dòng)求參加活動(dòng)的2人性別相同的概率?

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分。每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品。

)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為,的概率;

)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問:他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個(gè)相等實(shí)數(shù)根.

(1)求函數(shù)f(x)的解析式;

(2)當(dāng)x∈[1,2]時(shí),求f(x)的值域;

(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案