【題目】已知拋物線C:y2=8x的焦點為F,準線l與x軸的交點為M,過點M的直線l′與拋物線C的交點為P,Q,延長PF交拋物線C于點A,延長QF交拋物線C于點B,若 + =22,則直線l′的方程為 .
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=|x+a|,g(x)=|x+3|﹣x,記關于x的不等式f(x)<g(x)的解集為M.
(1)若a﹣3∈M,求實數(shù)a的取值范圍;
(2)若[﹣1,1]M,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=|x﹣a|,a∈R
(Ⅰ)當a=5,解不等式f(x)≤3;
(Ⅱ)當a=1時,若x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 =1的一個焦點為F(2,0),且離心率為
(1)求橢圓方程;
(2)過點M(3,0)作直線與橢圓交于A,B兩點,求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 的兩個焦點為 的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,設橢圓 =1(a>b>0)的左、右焦點分別為F1 , F2 , 右頂點為A,上頂點為B,離心率為e.橢圓上一點C滿足:C在x軸上方,且CF1⊥x軸.
(1)若OC∥AB,求e的值;
(2)連結CF2并延長交橢圓于另一點D若 ≤e≤ ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F(xiàn)分別是AB,AC上的點,且 ,(其中λ,μ∈(0,1)),且λ+4μ=1,若線段EF,BC的中點分別為M,N,則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=e2x+ln(x+a).
(1)當a=1時,①求f(x)在(0,1)處的切線方程;②當x≥0時,求證:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 + =1兩焦點分別為F1、F2 , P是橢圓在第一象限弧上一點,并滿足 =1,過P作兩條直線PA、PB分別交橢圓于A、B兩點.
(1)求P點坐標;
(2)若直線AB的斜率為 ,求△PAB面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com