【題目】2019年的流感來(lái)得要比往年更猛烈一些據(jù)四川電視臺(tái)“新聞現(xiàn)場(chǎng)”播報(bào),近日四川省人民醫(yī)院一天的最高接診量超過(guò)了一萬(wàn)四千人,成都市婦女兒童中心醫(yī)院接診量每天都在九千人次以上這些浩浩蕩蕩的看病大軍中,有不少人都是因?yàn)楦忻皝?lái)的醫(yī)院某課外興趣小組趁著寒假假期空閑,欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,他們分別到成都市氣象局與跳傘塔社區(qū)醫(yī)院抄錄了去年16月每月20日的晝夜溫差情況與患感冒就診的人數(shù),得到如下資料:

日期

120

220

320

420

520

620

晝夜溫差

10

11

13

12

8

6

就診人數(shù)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?

參考公式: ,

【答案】(1);(2)見(jiàn)解析

【解析】

根據(jù)數(shù)據(jù)求出以及,的值,即可求出y關(guān)于x的線性回歸方程;

分別計(jì)算出1月份和6月份對(duì)應(yīng)的預(yù)測(cè)值,和22作差,進(jìn)行比較即可得到結(jié)論.

由表中2月至5月份的數(shù)據(jù),

,,

故有,

由參考公式得,由,

y關(guān)于x的線性回歸方程

由1月份數(shù)據(jù)得當(dāng)時(shí),

,

由6月份數(shù)據(jù)得當(dāng)時(shí),

,

則該小組所得線性回歸方程是理想的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)。

1)求函數(shù)的單調(diào)減區(qū)間;

2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)均為正數(shù)數(shù)列滿足.

1)求數(shù)列的通項(xiàng)公式;

2)若等比數(shù)列滿足,求的值用含n的式子表示;

3)若,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年元旦班級(jí)聯(lián)歡晚會(huì)上,某班在聯(lián)歡會(huì)上設(shè)計(jì)了一個(gè)摸球表演節(jié)目的游戲,在一個(gè)紙盒中裝有1個(gè)紅球,1個(gè)黃球,1個(gè)白球和1個(gè)黑球,這些球除顏色外完全相同,A同學(xué)不放回地每次摸出1個(gè)球,若摸到黑球則停止摸球,否則就要將紙盒中的球全部摸出才停止.規(guī)定摸到紅球表演兩個(gè)節(jié)目,摸到白球或黃球表演一個(gè)節(jié)目,摸到黑球不用表演節(jié)目.

(1)求A同學(xué)摸球三次后停止摸球的概率;

(2)記X為A同學(xué)摸球后表演節(jié)目的個(gè)數(shù),求隨機(jī)變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面,,底面是邊長(zhǎng)為的正方形,的中點(diǎn)

1)求點(diǎn)到平面的距離;

2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn),兩個(gè)焦點(diǎn)分別為.

1)求橢圓的方程;

2)過(guò)的直線與橢圓相交于兩點(diǎn),若的內(nèi)切圓半徑為,求以為圓心且與直線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在空間中,過(guò)點(diǎn)A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個(gè)不同的平面,對(duì)空間任意一點(diǎn)P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,則( 。

A平面α與平面β垂直

B平面α與平面β所成的(銳)二面角為45°

C平面α與平面β平行

D平面α與平面β所成的(銳)二面角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,南昌市召開(kāi)了全球VR產(chǎn)業(yè)大會(huì),為了增強(qiáng)對(duì)青少年VR知識(shí)的普及,某中學(xué)舉行了一次普及VR知識(shí)講座,并從參加講座的男生中隨機(jī)抽取了50人,女生中隨機(jī)抽取了70人參加VR知識(shí)測(cè)試,成績(jī)分成優(yōu)秀和非優(yōu)秀兩類(lèi),統(tǒng)計(jì)兩類(lèi)成績(jī)?nèi)藬?shù)得到如下的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

a

35

50

女生

30

d

70

總計(jì)

45

75

120

(1)確定a,d的值;

(2)試判斷能否有90%的把握認(rèn)為VR知識(shí)的測(cè)試成績(jī)優(yōu)秀與否與性別有關(guān);

(3)為了宣傳普及VR知識(shí),從該校測(cè)試成績(jī)獲得優(yōu)秀的同學(xué)中按性別采用分層抽樣的方法,隨機(jī)選出6名組成宣傳普及小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求“到校外宣傳的2名同學(xué)中至少有1名是男生”的概率.

附:

P(K2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“活水圍網(wǎng)”養(yǎng)魚(yú)技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚(yú)時(shí),某種魚(yú)在一定的條件下,每尾魚(yú)的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)時(shí),的值為2千克/年;當(dāng)時(shí),的一次函數(shù);當(dāng)時(shí),因缺氧等原因,的值為0千克/年.

(1)當(dāng)時(shí),求關(guān)于的函數(shù)表達(dá)式.

(2)當(dāng)養(yǎng)殖密度為多少時(shí),魚(yú)的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案