【題目】如圖,四棱錐P﹣ABCD,底面是以O(shè)為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD= ,M為BC上的一點(diǎn),且BM= ,MP⊥AP.
(1)求PO的長(zhǎng);
(2)求二面角A﹣PM﹣C的正弦值.
【答案】
(1)解:連接AC,BD,
∵底面是以O(shè)為中心的菱形,PO⊥底面ABCD,
故AC∩BD=O,且AC⊥BD,
以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OP方向?yàn)閤,y,z軸正方向建立空間坐標(biāo)系O﹣xyz,
∵AB=2,∠BAD= ,
∴OA=ABcos( ∠BAD)= ,OB=ABsin( ∠BAD)=1,
∴O(0,0,0),A( ,0,0),B(0,1,0),C(﹣ ,0,0),
=(0,1,0), =(﹣ ,﹣1,0),
又∵BM= ,
∴ =(﹣ ,﹣ ,0),
則 = + =(﹣ , ,0),
設(shè)P(0,0,a),則 =(﹣ ,0,a), =( ,﹣ ,a),
∵M(jìn)P⊥AP,
∴ = ﹣a2=0,
解得a= ,
即PO的長(zhǎng)為 .
(2)解:由(1)知 =(﹣ ,0, ), =( ,﹣ , ), =( ,0, ),
設(shè)平面APM的法向量 =(x,y,z),平面PMC的法向量為 =(a,b,c),
由 ,得 ,
令x=1,則 =(1, ,2),
由 ,得 ,
令a=1,則 =(1,﹣ ,﹣2),
∵平面APM的法向量 和平面PMC的法向量 夾角θ滿足:
cosθ= = =﹣
故sinθ= =
【解析】(1)連接AC,BD,以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OP方向?yàn)閤,y,z軸正方向建立空間坐標(biāo)系O﹣xyz,分別求出向量 , 的坐標(biāo),進(jìn)而根據(jù)MP⊥AP,得到 =0,進(jìn)而求出PO的長(zhǎng);(2)求出平面APM和平面PMC的法向量,代入向量夾角公式,求出二面角的余弦值,進(jìn)而根據(jù)平方關(guān)系可得:二面角A﹣PM﹣C的正弦值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015男籃亞錦賽決賽階段,中國(guó)男籃以9連勝的不敗戰(zhàn)績(jī)贏得第28屆亞錦賽冠軍,同時(shí)拿到亞洲唯一1張直通里約奧運(yùn)會(huì)的入場(chǎng)券.賽后,中國(guó)男籃主力易建聯(lián)榮膺本屆亞錦賽MVP(最有價(jià)值球員),下表是易建聯(lián)在這9場(chǎng)比賽中投籃的統(tǒng)計(jì)數(shù)據(jù).
比分 | 易建聯(lián)技術(shù)統(tǒng)計(jì) | |||
投籃命中 | 罰球命中 | 全場(chǎng)得分 | 真實(shí)得分率 | |
中國(guó)91﹣42新加坡 | 3/7 | 6/7 | 12 | 59.52% |
中國(guó)76﹣73韓國(guó) | 7/13 | 6/8 | 20 | 60.53% |
中國(guó)84﹣67約旦 | 12/20 | 2/5 | 26 | 58.56% |
中國(guó)75﹣62哈薩克期坦 | 5/7 | 5/5 | 15 | 81.52% |
中國(guó)90﹣72黎巴嫩 | 7/11 | 5/5 | 19 | 71.97% |
中國(guó)85﹣69卡塔爾 | 4/10 | 4/4 | 13 | 55.27% |
中國(guó)104﹣58印度 | 8/12 | 5/5 | 21 | 73.94% |
中國(guó)70﹣57伊朗 | 5/10 | 2/4 | 13 | 55.27% |
中國(guó)78﹣67菲律賓 | 4/14 | 3/6 | 11 | 33.05% |
注:(1)表中a/b表示出手b次命中a次;
(2)TS%(真實(shí)得分率)是衡量球員進(jìn)攻的效率,其計(jì)算公式為:
TS%=.全場(chǎng)得分/2x(投籃出手次數(shù)+0.44x罰球出手次數(shù))
(Ⅰ)從上述9場(chǎng)比賽中隨機(jī)選擇一場(chǎng),求易建聯(lián)在該場(chǎng)比賽中TS%超過(guò)50%的概率;
(Ⅱ)從上述9場(chǎng)比賽中隨機(jī)選擇兩場(chǎng),求易建聯(lián)在這兩場(chǎng)比賽中TS%至少有一場(chǎng)超過(guò)60%的概率;
(Ⅲ)用x來(lái)表示易建聯(lián)某場(chǎng)的得分,用y來(lái)表示中國(guó)隊(duì)該場(chǎng)的總分,畫(huà)出散點(diǎn)圖如圖所示,請(qǐng)根據(jù)散點(diǎn)圖判斷y與x之間是否具有線性相關(guān)關(guān)系?結(jié)合實(shí)際簡(jiǎn)單說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游景點(diǎn)預(yù)計(jì)2013年1月份起前x個(gè)月的旅游人數(shù)的和p(x)(單位:萬(wàn)人)與x的關(guān)系近似地滿足p(x)=x(x+1)(39﹣2x),(x∈N* , 且x≤12).已知第x月的人均消費(fèi)額q(x)(單位:元)與x的近似關(guān)系是q(x)=
(I)寫(xiě)出2013年第x月的旅游人數(shù)f(x)(單位:萬(wàn)人)與x的函數(shù)關(guān)系式;
(II)試問(wèn)2013年第幾月旅游消費(fèi)總額最大,最大月旅游消費(fèi)總額為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示四棱錐中,底面,四邊形中,,,,.
求四棱錐的體積;
求證:平面;
在棱上是否存在點(diǎn)異于點(diǎn),使得平面,若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高二學(xué)生小嚴(yán)利用暑假參加社會(huì)實(shí)踐,為了幫助貿(mào)易公司的購(gòu)物網(wǎng)站優(yōu)化今年國(guó)慶節(jié)期間的營(yíng)銷策略,他對(duì)去年10月1日當(dāng)天在該網(wǎng)站消費(fèi)且消費(fèi)金額不超過(guò)1000元的1000名(女性800名,男性200名)網(wǎng)購(gòu)者,根據(jù)性別按分層抽樣的方法抽取100名進(jìn)行分析,得到如下統(tǒng)計(jì)圖表(消費(fèi)金額單位:元):
女性消費(fèi)情況:
消費(fèi)金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
人數(shù) | 5 | 10 | 15 |
男性消費(fèi)情況:
消費(fèi)金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
人數(shù) | 2 | 3 | 10 | 2 |
(1)現(xiàn)從抽取的100名且消費(fèi)金額在[800,1000](單位:元)的網(wǎng)購(gòu)者中隨機(jī)選出兩名發(fā)放網(wǎng)購(gòu)紅包,求選出的這兩名網(wǎng)購(gòu)者恰好是一男一女的概率;
(2)若消費(fèi)金額不低于600元的網(wǎng)購(gòu)者為“網(wǎng)購(gòu)達(dá)人”,低于600元的網(wǎng)購(gòu)者為“非網(wǎng)購(gòu)達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’與性別有關(guān)?”
女性 | 男性 | 總計(jì) | |
網(wǎng)購(gòu)達(dá)人 | |||
非網(wǎng)購(gòu)達(dá)人 | |||
總計(jì) |
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),的部分圖象如圖所示.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某二手車交易市場(chǎng)對(duì)某型號(hào)的二手汽車的使用年數(shù)與銷售價(jià)格(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價(jià) | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求關(guān)于的回歸直線方程:(參考公式:, .)
(2)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為萬(wàn)元,根據(jù)(1)中所求的回歸方程,預(yù)測(cè)為何值時(shí),銷售一輛該型號(hào)汽車所獲得的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中混裝著9個(gè)大小相同的球(編號(hào)不同),其中5只白球,4只紅球,為了把紅球與白球區(qū)分開(kāi)來(lái),采取逐只抽取檢查,若恰好經(jīng)過(guò)5次抽取檢查,正好把所有白球和紅球區(qū)分出來(lái)了,則這樣的抽取方式共有__________種(用數(shù)字作答) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com