【題目】已知正方形的邊長(zhǎng)為分別為的中點(diǎn),以為棱將正方形折成如圖所示的的二面角,點(diǎn)在線段上.
(1)若為的中點(diǎn),且直線,由三點(diǎn)所確定平面的交點(diǎn)為,試確定點(diǎn)的位置,并證明直線平面;
(2)是否存在點(diǎn),使得直線與平面所成的角為;若存在,求此時(shí)二面角的余弦值,若不存在,說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)利用中位線不難得到的位置,連接交于,則,證得線面平行;
(2)取中點(diǎn),以為原點(diǎn)建立空間坐標(biāo)系,設(shè),利用線面所成角去列方程,解得值,然后確定二面角的兩個(gè)面的法向量,利用公式求解即可.
(1)因?yàn)橹本平面,
故點(diǎn)在平面內(nèi)也在平面內(nèi),
所以點(diǎn)在平面與平面的交線上(如圖所示)
因?yàn)?/span>,為的中點(diǎn),所以,
所以,,所以點(diǎn)在的延長(zhǎng)線上,且
連結(jié)交于,因?yàn)樗倪呅?/span>為矩形,所以是的中點(diǎn)
連結(jié),因?yàn)?/span>為的中位線,所以,
又因?yàn)?/span>平面,所以直線平面.
(2)由已知可得,,,所以平面,
所以平面平面,取的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
所以,,,,
所以,,
設(shè),則,
設(shè)平面的法向量,則,
取,則,,所以,
與平面所成的角為,所以,
所以,所以,解得或,
所以存在點(diǎn),使得直線與平面所成的角為,
取的中點(diǎn),則為平面的法向量,因?yàn)?/span>,
所以,,
設(shè)二面角的大小為,
所以,
因?yàn)楫?dāng)時(shí),,平面平面,
所以當(dāng)時(shí),為鈍角,所以.
當(dāng)時(shí),為銳角,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種子公司對(duì)一種新品種的種子的發(fā)芽多少與晝夜溫差之間的關(guān)系進(jìn)行分析研究,以便選擇最合適的種植條件.他們分別記錄了10塊試驗(yàn)地每天的晝夜溫差和每塊實(shí)驗(yàn)地里50顆種子的發(fā)芽數(shù),得到如下資料:
(1)從上述十組試驗(yàn)數(shù)據(jù)來(lái)看,是否可以判斷晝夜溫差與發(fā)芽數(shù)之間具有相關(guān)關(guān)系?是否具有線性相關(guān)關(guān)系?
(2)若在一定溫度范圍內(nèi),晝夜溫差與發(fā)芽數(shù)近似滿足相關(guān)關(guān)系:(其中).取后五組數(shù)據(jù),利用最小二乘法求出線性回歸方程(精確到0.01);
(3)利用(2)的結(jié)論,若發(fā)芽數(shù)試驗(yàn)值與預(yù)測(cè)值差的絕對(duì)值不超過(guò)3個(gè)就認(rèn)為正常,否則認(rèn)為不正常.從上述十組試驗(yàn)中任取三組,至少有兩組正常的概率是多少?
附:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果存在常數(shù),使得數(shù)列滿足:若是數(shù)列中的一項(xiàng),則也是數(shù)列 中的一項(xiàng),稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.
(1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求和的值;
(2)已知有窮等差數(shù)列的項(xiàng)數(shù)是,所有項(xiàng)之和是,求證:數(shù)列是“兌換數(shù)列”,并用和表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不小于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某城市有一塊半徑為(單位:百米)的圓形景觀,圓心為,有兩條與圓形景觀相切且互相垂直的道路.最初規(guī)劃在拐角處圖中陰影部分只有一塊綠化地,后來(lái)有眾多市民建議在綠化地上建一條小路,便于市民快捷地往返兩條道路.規(guī)劃部門采納了此建議,決定在綠化地中增建一條與圓相切的小道問(wèn):兩點(diǎn)應(yīng)選在何處可使得小道最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足,,,數(shù)列滿足.
(1)證明是等差數(shù)列,并求的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,,記表示不超過(guò)x的最大整數(shù),求關(guān)于n的不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一點(diǎn).
(1)求證:平面EBD⊥平面SAC;
(2)設(shè)SA=4,AB=2,求點(diǎn)A到平面SBD的距離;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點(diǎn).
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點(diǎn),求三棱錐AEBC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,短軸長(zhǎng)為.
(1)求的方程;
(2)如圖,經(jīng)過(guò)橢圓左頂點(diǎn)且斜率為的直線與交于兩點(diǎn),交軸于點(diǎn),點(diǎn)為線段的中點(diǎn),若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,過(guò)點(diǎn)作(為坐標(biāo)原點(diǎn))垂直的直線交直線于點(diǎn),且面積為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com