【題目】為了解某班學(xué)生喜好體育運動是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運動 | 不喜好體育運動 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知按喜好體育運動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運動的人數(shù)為6.
(1)請將上面的列聯(lián)表補充完整;
(2)能否在犯錯概率不超過0.01的前提下認(rèn)為喜好體育運動與性別有關(guān)?說明理由.
附:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是雙曲線的左、右焦點,過點作垂直與軸的直線交雙曲線于,兩點,若為銳角三角形,則雙曲線的離心率的取值范圍是_______.
【答案】
【解析】
根據(jù)雙曲線的通徑求得點的坐標(biāo),將三角形為銳角三角形,轉(zhuǎn)化為,即,將表達(dá)式轉(zhuǎn)化為含有離心率的不等式,解不等式求得離心率的取值范圍.
根據(jù)雙曲線的通徑可知,由于三角形為銳角三角形,結(jié)合雙曲線的對稱性可知,故,即,即,解得,故離心率的取值范圍是.
【點睛】
本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對稱性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉(zhuǎn)化為,利用列不等式,再將不等式轉(zhuǎn)化為只含離心率的表達(dá)式,解不等式求得雙曲線離心率的取值范圍.
【題型】填空題
【結(jié)束】
17
【題目】已知命題:方程有兩個不相等的實數(shù)根;命題:不等式的解集為.若或為真,為假,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】梯形頂點在以為直徑的圓上,米.
(1)如圖1,若電熱絲由這三部分組成,在上每米可輻射1單位熱量,在上每米可輻射2單位熱量,請設(shè)計的長度,使得電熱絲的總熱量最大,并求總熱量的最大值;
(2)如圖2,若電熱絲由弧和弦這三部分組成,在弧上每米可輻射1單位熱量,在弦上每米可輻射2單位熱量,請設(shè)計的長度,使得電熱絲輻射的總熱量最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時,有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某面包推出一款新面包,每個面包的成本價為4元,售價為10元,該款面包當(dāng)天只出一爐(一爐至少15個,至多30個),當(dāng)天如果沒有售完,剩余的面包以每個2元的價格處理掉,為了確定這一爐面包的個數(shù),該店記錄了這款新面包最近30天的日需求量(單位:個),整理得下表:
(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個)線性相關(guān),求關(guān)于的線性回歸方程;
(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個數(shù)為24,記當(dāng)日這款新面包獲得的總利潤為(單位:元).
(。┤羧招枨罅繛15個,求;
(ⅱ)求的分布列及其數(shù)學(xué)期望.
相關(guān)公式: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的左、右焦點為F1,F2,設(shè)點F1,F2與橢圓短軸的一個端點構(gòu)成斜邊長為4的直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A,B,P為橢圓C上三點,滿足,記線段AB中點Q的軌跡為E,若直線l:y=x+1與軌跡E交于M,N兩點,求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的圖象為C,則下列結(jié)論中正確的是( )
A.圖象C關(guān)于直線對稱
B.圖象C關(guān)于點對稱
C.函數(shù)在區(qū)間內(nèi)是增函數(shù)
D.把函數(shù)的圖象上點的橫坐標(biāo)縮短為原來的一半(縱坐標(biāo)不變)可以得到圖象C
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,常數(shù)).
(1)當(dāng)時,討論函數(shù)的奇偶性并說明理由;
(2)若函數(shù)在區(qū)間上單調(diào),求正數(shù)的取值范圍;
(3)若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量y(萬噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據(jù):,計算結(jié)果保留小數(shù)點后兩位)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com