【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下列表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全班50人中隨機抽取1人,抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上表補充完整(不用寫計算過程);
(2)能否有99.5%的把握認為喜愛打籃球與性別有關(guān)?說明你的理由.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: ,其中)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場有獎銷售中,購滿100元商品得1張獎券,多購多得.1 000張獎券為一個開獎單位,設(shè)特等獎1個,一等獎10個,二等獎50個.設(shè)1張獎券中特等獎、一等獎、二等獎的事件分別為A,B,C,求:
(1)P(A),P(B),P(C).
(2)1張獎券的中獎概率.
(3)1張獎券不中特等獎,且不中一等獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ax-a(a∈R且a≠0)在點處的切線
與直線平行, (1)求實數(shù)a的值,
(2)求此時f(x)在[-2,1]上的最大、最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的焦距為,點在上.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點在上,點的軌跡為曲線,過原點作直線與曲線交于、兩點,點,證明: 為定值,并求出定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,短軸的一個端點為.過橢圓左頂點的直線與橢圓的另一交點為.
(1)求橢圓的方程;
(2)若與直線交于點,求的值;
(3)若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-3x+lnx.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若對于任意的x1,x2∈(1,+∞),x1≠x2,都有恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當時,求的最小值;
(2)存在時,使得不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是長軸長為的橢圓: 上異于頂點的一個動點, 為坐標原點, 為橢圓的右頂點,點為線段的中點,且直線與的斜率之積恒為.
(1)求橢圓的方程;
(2)設(shè)過左焦點且不與坐標軸垂直的直線交橢圓于兩點,線段的垂直平分線與軸交于點,點橫坐標的取值范圍是,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關(guān),在市第一人民醫(yī)院隨機對入院50人進行了問卷調(diào)查,得到如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(1)是否有99.5%的把握認為患心肺疾病與性別有關(guān)?說明你的理由;
(2)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3位進行其他方面的排查,其中患胃病的人數(shù)為,求的分布列、數(shù)學(xué)期望.
參考公式: ,其中.
下面的臨界值僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com