【題目】函數(shù)是定義在上的偶函數(shù),周期是4,當時,.則方程的根的個數(shù)為( )
A.3B.4C.5D.6
【答案】C
【解析】
由偶函數(shù)得出函數(shù)上的解析式,結合周期作出函數(shù)的圖象,再作函數(shù)圖象,觀察這兩個函數(shù)圖象公共點,由時,,而,因此在無交點,是它們的一個交點,注意在點前面還有一交點(可從導數(shù)即切線斜率說明).然后才可得結論.
方程的根的個數(shù)就是函數(shù)和圖象的交點的個數(shù).
由于是偶函數(shù),因此由題意知時,,作出函數(shù)的圖象,再作出的圖象,它們在上有3個交點,由時,,而,因此在無交點,是一個交點,
在點處時,的切線為,,,因此在處的切線與的圖象有相交(有兩個公共點),從而與的圖象有兩個交點.
所以函數(shù)和圖象有5個交點.即方程有5個根.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)當時,討論函數(shù)的單調(diào)性
(2)當時,,對任意,都有恒成立,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設一個正三棱柱,每條棱長都相等,一只螞蟻從上底面的某頂點出發(fā),每次只沿著棱爬行并爬到另一個頂點,算一次爬行,若它選擇三個方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 為圓的直徑,點, 在圓上, ,矩形和圓所在的平面互相垂直,已知, .
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的大;
(Ⅲ)當的長為何值時,二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,焦距為,與拋物線有公共焦點.
(1)求橢圓C1與拋物線的方程;
(2)已知直線是圓的一條切線,與橢圓C1交于兩點,若直線斜率存在且不為,在橢圓C1上存在點,使,其中為坐標原點,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,圓,點為圓上動點,線段的垂直平分線交于點,記的軌跡為曲線.
(1)求曲線的方程;
(2)過點與作平行直線和,分別交曲線于點、和點、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某氣象站統(tǒng)計了4月份甲、乙兩地的天氣溫度(單位),統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示,
(1)根據(jù)所給莖葉圖利用平均值和方差的知識分析甲,乙兩地氣溫的穩(wěn)定性;
(2)氣象主管部門要從甲、乙兩地各隨機抽取一天的天氣溫度,若甲、乙兩地的溫度之和大于或等于,則被稱為“甲、乙兩地往來溫度適宜天氣”,求“甲、乙兩地往來溫度適宜天氣”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式,為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式,根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如圖所示的莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù),并將完成生產(chǎn)任務所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表,再根據(jù)列聯(lián)表,能否有99.9%的把握認為兩種生產(chǎn)方式的效率有差異?
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com