【題目】在平面上, ⊥ ,| |=| |=1, = + .若| |< ,則| |的取值范圍是( )
A.(0, ]
B.( , ]
C.( , ]
D.( , ]
【答案】D
【解析】解:根據(jù)條件知A,B1 , P,B2構(gòu)成一個(gè)矩形AB1PB2 , 以AB1 , AB2所在直線為坐標(biāo)軸建立直角坐標(biāo)系,設(shè)|AB1|=a,|AB2|=b,點(diǎn)O的坐標(biāo)為(x,y),則點(diǎn)P的坐標(biāo)為(a,b),
由| |=| |=1,得 ,則
∵| |< ,∴
∴
∴
∵(x﹣a)2+y2=1,∴y2=1﹣(x﹣a)2≤1,
∴y2≤1
同理x2≤1
∴x2+y2≤2②
由①②知 ,
∵| |= ,∴ <| |≤
故選D.
【考點(diǎn)精析】利用平面向量的基本定理及其意義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩位射擊運(yùn)動(dòng)員在一次射擊測(cè)試中各射靶7次,每次命中的環(huán)數(shù)如下:
甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8
則下列判斷正確的是( 。
A. 甲射擊的平均成績(jī)比乙好 B. 甲射擊的成績(jī)的眾數(shù)小于乙射擊的成績(jī)的眾數(shù)
C. 乙射擊的平均成績(jī)比甲好 D. 甲射擊的成績(jī)的極差大于乙射擊的成績(jī)的極差
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家邊防安全條例規(guī)定:當(dāng)外輪與我國(guó)海岸線的距離小于或等于海里時(shí),就會(huì)被警告.如圖,設(shè),是海岸線上距離海里的兩個(gè)觀察站,滿足,一艘外輪在點(diǎn)滿足,.
(1),滿足什么關(guān)系時(shí),就該向外輪發(fā)出警告令其退出我國(guó)海域?
(2)當(dāng)時(shí),間處于什么范圍內(nèi)可以避免使外輪進(jìn)入被警告區(qū)域?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷售收益(單位:萬(wàn)元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的.
廣告投入/萬(wàn)元 | 1 | 2 | 3 | 4 | 5 |
銷售收益/萬(wàn)元 | 2 | 3 | 2 | 5 | 7 |
(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(Ⅱ)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到上表:
表中的數(shù)據(jù)顯示與之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;
(Ⅲ)若廣告投入萬(wàn)元時(shí),實(shí)際銷售收益為萬(wàn)元,求殘差.
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線是一條居民平時(shí)散步的小道,小道兩旁是空地,當(dāng)?shù)卣疄榱素S富居民的業(yè)余生活,要在小道兩旁規(guī)劃出兩地來(lái)修建休閑活動(dòng)場(chǎng)所,已知空地和規(guī)劃的兩塊用地(陰影區(qū)域)都是矩形,,,,若以所在直線為軸,為原點(diǎn),建立如圖平面直角坐標(biāo)系,則曲線的方程為,記,規(guī)劃的兩塊用地的面積之和為.(單位:)
(1)求關(guān)于的函數(shù);
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD= ,F(xiàn)為PC的中點(diǎn),AF⊥PB.
(1)求PA的長(zhǎng);
(2)求二面角B﹣AF﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)監(jiān)測(cè),在海濱某城市附近的海面有一臺(tái)風(fēng). 臺(tái)風(fēng)中心位于城市的東偏南方向、距離城市的海面處,并以的速度向西偏北方向移動(dòng)(如圖示).如果臺(tái)風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺(tái)風(fēng)移動(dòng)的方向與速度不變,那么該城市受臺(tái)風(fēng)侵襲的時(shí)長(zhǎng)為_____ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018河南安陽(yáng)市高三一模】如下圖,在平面直角坐標(biāo)系中,直線與直線之間的陰影部分即為,區(qū)域中動(dòng)點(diǎn)到的距離之積為1.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)動(dòng)直線穿過(guò)區(qū)域,分別交直線于兩點(diǎn),若直線與軌跡有且只有一個(gè)公共點(diǎn),求證: 的面積恒為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com