如下圖給出了一個算法框圖,其作用是輸入x的值,輸出相應的y值.若要輸入的x值與輸出的y值互為相反數(shù),則這樣的x有

[  ]
A.

1個

B.

2個

C.

3個

D.

4個

答案:B
解析:

  解:觀察算法框圖可知,其功能是求分段函數(shù)的函數(shù)值.“要使輸入的x值與輸出的y值互為相反數(shù),并求x的值有幾個”實質上就是“解分段函數(shù)對應的方程f(x)=-x”,所以f(x)=-x等價于解得x=-1,或x=0.故選B.

  點評:本題中的框圖是選擇結構.解本題的關鍵是執(zhí)行算法,分析清楚這個算法框圖的功能,把問題轉化為熟悉的解分段函數(shù)對應的方程,根據(jù)方程易求解.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2010年廣東省高二上學期10月月考理科數(shù)學卷 題型:選擇題

如下圖給出了一個算法流程圖,該算法流程圖的功能是(      )

A.求三個數(shù)中最大的數(shù)  B.求三個數(shù)中最小的數(shù)

C.按從小到大排列      D.按從大到小排列

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

楊輝是中國南宋末年的一位杰出的數(shù)學家、數(shù)學教育家.他的數(shù)學著作頗多,他編著的數(shù)學書共5種21卷,在他的著作中收錄了不少現(xiàn)已失傳的古代數(shù)學著作中的算題和算法.他的數(shù)學研究與教育工作的重點是在計算技術方面.楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數(shù)的性質有關,楊輝三角中蘊涵了許多優(yōu)美的規(guī)律.古今中外,許多數(shù)學家如賈憲、朱世杰、帕斯卡、華羅庚等都曾深入研究過,并將研究結果應用于其他工作.下圖是一個11階的楊輝三角:

 

試回答:(其中第(1)&(5)小題只需直接給出最后的結果,無需求解過程)

(1)記第i(i∈N*)行中從左到右的第j(j∈N*)個數(shù)為aij,則數(shù)列{aij}的通項公式為          ,

n階楊輝三角中共有           個數(shù);

(2)第k行各數(shù)的和是;

(3)n階楊輝三角的所有數(shù)的和是;

(4)將第n行的所有數(shù)按從左到右的順序合并在一起得到的多位數(shù)等于;

(5)第p(p∈N*,且p≥2)行除去兩端的數(shù)字1以外的所有數(shù)都能被p整除,則整數(shù)p一定為(   )

A.奇數(shù)                B.質數(shù)              C.非偶數(shù)                D.合數(shù)

(6)在第3斜列中,前5個數(shù)依次為1、3、6、10、15;第4斜列中,第5個數(shù)為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結論:

m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).

試用含有m、k(mk∈N*)的數(shù)學公式表示上述結論并證明其正確性.

數(shù)學公式為                   .

證明:                        .

查看答案和解析>>

同步練習冊答案